Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 13(24)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464526

RESUMO

Wide bandgap semiconductors such as gallium nitride (GaN) exhibit persistent photoconductivity properties. The incorporation of this asset into the fabrication of a unique biointerface is presented. Templates with lithographically defined regions with controlled roughness are generated during the semiconductor growth process. Template surface functional groups are varied using a benchtop surface functionalization procedure. The conductivity of the template is altered by exposure to UV light and the behavior of PC12 cells is mapped under different substrate conductivity. The pattern size and roughness are combined with surface chemistry to change the adhesion of PC12 cells when the GaN is made more conductive after UV light exposure. Furthermore, during neurite outgrowth, surface chemistry and initial conductivity difference are used to facilitate the extension to smoother areas on the GaN surface. These results can be utilized for unique bioelectronics interfaces to probe and control cellular behavior.

2.
Chemphyschem ; 12(6): 1189-95, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21433242

RESUMO

We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li-doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100-200 cm(-1), which are attributed to acoustical phonons. In the high-energy range two peaks were observed at 735 cm(-1) and 1090 cm(-1). Excitation-dependent Raman spectroscopy of the 1090 cm(-1) mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface-bound LiO(2) defect sites, that is, the presence of Li(+)O(2)(-) superoxide. Accordingly, the observed Raman peaks at 735 cm(-1) and 1090 cm(-1) are assigned to Li-O and O-O vibrations of LiO(2).

3.
ACS Appl Bio Mater ; 3(10): 7211-7218, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019379

RESUMO

The surface properties of inorganic materials can be used to modulate the response of microorganisms at the interface. We used the persistent photoconductivity properties of chemically treated gallium nitride substrates to evaluate the stress response of wild-type, ΔfliC, and ΔcsgG mutant E. coli exposed to charged surfaces. Substrate surface characterization and biological assays were used to correlate the physiological response to substrate surface charge. The physiological response was evaluated by measuring the intracellular levels of reactive oxygen species (ROS) and Ca2+ cations using fluorescent probes. We evaluated the response 1, 2, and 3 h after a short exposure to the surfaces to determine generational effects of the initial exposure on the physiology of the bacteria. In general, the ROS levels 1 h after exposure were not different. However, there were differences in Ca2+ levels in E. coli 1 h after the initial exposure to charged GaN surfaces, primarily in the wild-type E. coli. The differences in Ca2+ levels depended on the substrate surface chemistry and genetic mutation that suggests the involvement of multiple factors for modulating the interactions of bacteria at interfaces.

4.
ACS Appl Bio Mater ; 3(12): 9073-9081, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019584

RESUMO

Microorganisms regulate their interactions with surfaces by altering the transcription of specific target genes in response to physicochemical surface cues. To assess the influence of surface charge and surface chemistry on the transcriptional oxidative stress response, we evaluated the expression of three genes, oxyS, katE, and sodB from the Gram-negative bacterium, Escherichia coli, after a short exposure to GaN interfaces. We observed that both surface charge and surface chemistry were the factors regulating the transcriptional response of the target genes, which indicates that reactive oxygen species (ROS) generation and the ROS response at the GaN interfaces were affected by changing surface properties. The changes in transcription did not correlate to the surface charge in all cases, indicating that there was an influence from multiple interfacial properties on the interactions. Alteration of the bacterial morphology also was a critical factor in these transcriptional responses to the surface cues. When compared to wild-type E. coli bacteria, bacteria missing either flagella or curli exhibited altered transcriptional profiles of the three oxidative stress genes when exposed to GaN materials. These results indicate that the bacterial flagella and curli modulated the oxidative stress response in different ways. The results of this work add to our understanding of the interactions of microbes at interfaces and will be useful for guiding the development of electronic biointerfaces.

5.
ACS Appl Bio Mater ; 2(9): 4044-4051, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021338

RESUMO

Bacterial behavior is often controlled by structural and composition elements of their cell wall. Using genetic mutant strains that change specific aspects of their surface structure, we modified bacterial behavior in response to semiconductor surfaces. We monitored the adhesion, membrane potential, and catalase activity of the Gram-negative bacterium Escherichia coli (E. coli) that were mutant for genes encoding components of their surface architecture, specifically flagella, fimbriae, curli, and components of the lipopolysaccharide membrane, while on gallium nitride (GaN) surfaces with different surface potentials. The bacteria and the semiconductor surface properties were recorded prior to the biofilm studies. The data from the materials and bioassays characterization supports the notion that alteration of the surface structure of the E. coli bacterium resulted in changes to bacterium behavior on the GaN medium. Loss of specific surface structure on the E. coli bacterium reduced its sensitivity to the semiconductor interfaces, while other mutations increase bacterial adhesion when compared to the wild-type control E. coli bacteria. These results demonstrate that bacterial behavior and responses to GaN semiconductor materials can be controlled genetically and can be utilized to tune the fate of living bacteria on GaN surfaces.

6.
RSC Adv ; 8(64): 36722-36730, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35558918

RESUMO

Neurotypic PC12 cells behavior was studied on nanostructured GaN and rationalized with respect to surface charge, doping level, and chemical functionalization. The semiconductor analysis included atomic force microscopy, Kelvin probe force microscopy, and X-ray photoelectron spectroscopy. The semiconductor surfaces were then evaluated as biointerfaces, and the in vitro cell behavior was quantified based on cell viability, reactive oxygen species production, as well as time dependent intracellular Ca concentration, [Ca2+]i, a known cell-signaling molecule. In this work, we show that persistent photoconductivity (PPC) can be used to alter the surface properties prior to chemical functionalization, the concentration of dopants can have some effect on cellular behavior, and that chemical functionalization changes the surface potential before and after exposure to UV light. Finally, we describe some competing mechanisms of PPC-induced [Ca2+]i changes, and how researchers looking to control cell behavior non-invasively can consider PPC as a useful control knob.

7.
ACS Omega ; 3(1): 615-621, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023784

RESUMO

The persistent photoconductivity (PPC) of the n-type Ga-polar GaN was used to stimulate PC12 cells noninvasively. Analysis of the III-V semiconductor material by atomic force microscopy, Kelvin probe force microscopy, photoconductivity, and X-ray photoelectron spectroscopy quantified bulk and surface charge, as well as chemical composition before and after exposure to UV light and cell culture media. The semiconductor surface was made photoconductive by illumination with UV light and experienced PPC, which was utilized to stimulate PC12 cells in vitro. Stimulation was confirmed by measuring the changes in intracellular calcium concentration. Control experiments with gallium salt verified the stimulation of neurotypic cells. Inductively coupled plasma mass spectrometry data confirmed the lack of gallium leaching and toxic effects during the stimulation.

8.
Nanoscale ; 10(24): 11506-11516, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29888776

RESUMO

Baker's yeast, S. cerevisiae, is a model organism that is used in synthetic biology. The work demonstrates how GaN nanostructured thin films can encode physiological responses in S. cerevisiae yeast. The Ga-polar, n-type, GaN thin films are characterized via Photocurrent Measurements, Atomic Force Microscopy and Kelvin Probe Force Microscopy. UV light is used to induce persistent photoconductivity that results in charge accumulation on the surface. The morphological, chemical and electronic properties of the nanostructured films are utilized to activate the cell wall integrity pathway and alter the amount of chitin produced by the yeast. The encoded cell responses are induced by the semiconductor interfacial properties associated with nanoscale topography and the accumulation of charge on the surface that promotes the build-up of oxygen species and in turn cause a hyperoxia related change in the yeast. The thin films can also alter the membrane voltage of yeast. The observed modulation of the membrane voltage of the yeast exposed to different GaN samples supports the notion that the semiconductor material can cause cell polarization. The results thus define a strategy for bioelectronics communication where the roughness, surface chemistry and charge of the wide band gap semiconductor's thin film surface initiate the encoding of the yeast response.


Assuntos
Gálio/química , Nanoestruturas , Saccharomyces cerevisiae/fisiologia , Membrana Celular/fisiologia , Parede Celular/fisiologia , Quitina/biossíntese , Microscopia de Força Atômica , Oxigênio/química , Semicondutores , Raios Ultravioleta
9.
ACS Appl Mater Interfaces ; 10(13): 10607-10611, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29558103

RESUMO

When pristine material surfaces are exposed to air, highly reactive broken bonds can promote the formation of surface oxides with structures and properties differing greatly from bulk. Determination of the oxide structure is often elusive through the use of indirect diffraction methods or techniques that probe only the outermost layer. As a result, surface oxides forming on widely used materials, such as group III-nitrides, have not been unambiguously resolved, even though critical properties can depend sensitively on their presence. In this study, aberration corrected scanning transmission electron microscopy reveals directly, and with depth dependence, the structure of ultrathin native oxides that form on AlN and GaN surfaces. Through atomic resolution imaging and spectroscopy, we show that the oxide layers are comprised of tetrahedra-octahedra cation-oxygen units, in an arrangement similar to bulk θ-Al2O3 and ß-Ga2O3. By applying density functional theory, we show that the observed structures are more stable than previously proposed surface oxide models. We place the impact of these observations in the context of key III-nitride growth, device issues, and the recent discovery of two-dimensional nitrides.

10.
ACS Nano ; 10(8): 7493-9, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27483193

RESUMO

We present a combined theoretical and experimental effort to enable strong light absorption (>70%) in atomically thin MoS2 films (≤4 layers) for either narrowband incidence with arbitrarily prespecified wavelengths or broadband incidence like solar radiation. This is achieved by integrating the films with resonant photonic structures that are deterministically designed using a unique reverse design approach based on leaky mode coupling. The design starts with identifying the properties of leaky modes necessary for the targeted strong absorption, followed by searching for the geometrical features of nanostructures to support the desired modes. This process is very intuitive and only involves a minimal amount of computation, thanks to the straightforward correlations between optical functionality and leaky modes as well as between leaky modes and the geometrical feature of nanostructures. The result may provide useful guidance for the development of high-performance atomic-scale photonic devices, such as solar cells, modulators, photodetectors, and photocatalysts.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26048553

RESUMO

We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.


Assuntos
Compostos de Alumínio/química , Técnicas Biossensoriais , Eletrônica , Gálio/química , Semicondutores , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA