Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 36(18): 2726-2741, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778956

RESUMO

Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.


Assuntos
Replicação do DNA , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Metilação
2.
Sci Adv ; 9(6): eadf0597, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763664

RESUMO

MicroRNA (miRNA) homeostasis is crucial for the posttranscriptional regulation of their target genes during development and in disease states. miRNAs are derived from primary transcripts and are processed from a hairpin precursor intermediary to a mature 22-nucleotide duplex RNA. Loading of the duplex into the Argonaute (AGO) protein family is pivotal to miRNA abundance and its posttranscriptional function. The Integrator complex plays a key role in protein coding and noncoding RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global destabilization of mature miRNAs. Enhanced ultraviolet cross-linking and immunoprecipitation of Integrator uncovered an association with duplex miRNAs before their loading onto AGOs. Tracing miRNA fate from biogenesis to stabilization by incorporating 4-thiouridine in nascent transcripts pinpointed a critical role for Integrator in miRNA assembly into AGOs.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , Núcleo Celular/metabolismo
3.
Curr Opin Cell Biol ; 70: 37-43, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340967

RESUMO

Genomic transcription is fundamental to all organisms. In metazoans, the Integrator complex is required for endonucleolytic processing of noncoding RNAs, regulation of RNA polymerase II pause-release, and premature transcription attenuation at coding genes. Recent insights into the structural composition and evolution of Integrator subunits have informed our understanding of its biochemical functionality. Moreover, studies in multiple model organisms point to an essential function of Integrator in signaling response and cellular development, highlighting a key role in neuronal differentiation. Indeed, alterations in Integrator complex subunits have been identified in patients with neurodevelopmental diseases and cancer. Taken together, we propose that Integrator is a central regulator of transcriptional processes and that its evolution reflects genomic complexity in regulatory elements and chromatin architecture.


Assuntos
RNA Polimerase II , RNA Longo não Codificante , RNA não Traduzido , Cromatina/genética , Regulação da Expressão Gênica , Humanos , RNA Polimerase II/metabolismo , RNA não Traduzido/genética , Transdução de Sinais
4.
Sci Adv ; 7(45): eabe3393, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34730992

RESUMO

Integrator regulates the 3'-end processing and termination of multiple classes of noncoding RNAs. Depletion of INTS11, the catalytic subunit of Integrator, or ectopic expression of its catalytic dead enzyme impairs the 3'-end processing and termination of a set of protein-coding transcripts termed Integrator-regulated termination (IRT) genes. This defect is manifested by increased RNA polymerase II (RNAPII) readthrough and occupancy of serine-2 phosphorylated RNAPII, de novo trimethylation of lysine-36 on histone H3, and a compensatory elevation of the cleavage and polyadenylation (CPA) complex beyond the canonical polyadenylation sites. 3' RNA sequencing reveals that proximal polyadenylation site usage relies on the endonuclease activity of INTS11. The DNA sequence encompassing the transcription end sites of IRT genes features downstream polyadenylation motifs and an enrichment of GC content that permits the formation of secondary structures within the 3'UTR. Together, this study identifies a subset of protein-coding transcripts whose 3' end processing requires the Integrator complex.

5.
Elife ; 102021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683199

RESUMO

Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.


Assuntos
Replicação do DNA/genética , Proteínas de Manutenção de Minicromossomo/genética , Modelos Genéticos , Complexo de Reconhecimento de Origem/genética , Linhagem Celular Tumoral , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo
6.
Sci Adv ; 6(27): eaaz9072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32923585

RESUMO

RNA 3' end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3' end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically.

7.
Neoplasia ; 21(10): 974-988, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442917

RESUMO

We recently described a positive feedback loop connecting c-MYC, NAMPT, DBC1 and SIRT1 that contributes to unrestricted cancer cell proliferation. Here we determine the relevance of the loop for serrated route intestinal tumorigenesis using genetically well-defined BrafV600E and K-rasG12D mouse models. In both models we show that c-MYC and SIRT1 protein expression increased through progression from hyperplasia to invasive carcinomas and metastases. It correlated with high NAMPT expression and was directly associated to activation of the oncogenic drivers. Assessing functional and molecular consequences of pharmacological interference with factors of the loop, we found that inhibition of NAMPT resulted in apoptosis and reduced clonogenic growth in human BRAF-mutant colorectal cancer cell lines and patient-derived tumoroids. Blocking SIRT1 activity was only effective when combined with a PI3K inhibitor, whereas the latter antagonized the effects of NAMPT inhibition. Interfering with the positive feedback loop was associated with down-regulation of c-MYC and temporary de-repression of TP53, explaining the anti-proliferative and pro-apoptotic effects. In conclusion we show that the c-MYC-NAMPT-DBC1-SIRT1 positive feedback loop contributes to murine serrated tumor progression. Targeting the feedback loop exerted a unique, dual therapeutic effect of oncoprotein inhibition and tumor suppressor activation. It may therefore represent a promissing target for serrated colorectal cancer, and presumably for other cancer types with deregulated c-MYC.


Assuntos
Transformação Celular Neoplásica , Citocinas/metabolismo , Neoplasias Intestinais/etiologia , Neoplasias Intestinais/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 1/metabolismo , Animais , Apoptose/genética , Biomarcadores , Biópsia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Imuno-Histoquímica , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/patologia , Camundongos , Mutação , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores
8.
Med Oncol ; 36(1): 5, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30460421

RESUMO

We have recently identified a positive feedback loop in which c-MYC increases silent information regulator 1 (SIRT1) protein level and activity through transcriptional activation of nicotinamide phosphoribosyltransferase (NAMPT) and NAD+ increase. Here, we determined the relevance of the c-MYC-NAMPT-SIRT1 feedback loop, including the SIRT1 inhibitor deleted in breast cancer 1 (DBC1), for the development of conventional and serrated colorectal adenomas. Immunohistochemical analyses of 104 conventional adenomas with low- and high-grade dysplasia and of 157 serrated lesions revealed that elevated expression of c-MYC, NAMPT, and SIRT1 characterized all conventional and serrated adenomas, whereas DBC1 was not differentially regulated. Analyzing publicly available pharmacogenomic databases from 43 colorectal cancer cell lines demonstrated that responsiveness towards a NAMPT inhibitor was significantly associated with alterations in PTEN and TGFBR2, while features such as BRAF or RNF43 alterations, or microsatellite instability typical for serrated route colorectal cancer, showed increased sensitivities for inhibition of NAMPT and SIRT1. Our findings suggest an activation of the c-MYC-NAMPT-SIRT1 feedback loop that may crucially contribute to initiation and development of both routes to colorectal cancer. Targeting of NAMPT or SIRT1 may represent novel therapeutic strategies with putative higher sensitivity of the serrated route colorectal cancer subtype.


Assuntos
Adenoma/patologia , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 1/metabolismo , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/metabolismo , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
9.
PLoS One ; 11(1): e0146281, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731538

RESUMO

Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.


Assuntos
Plasticidade Celular/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Hipóxia/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fator Inibidor de Leucemia/farmacologia , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA