Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 5: 100101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180033

RESUMO

In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical ß-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.

2.
J Phys Chem B ; 121(12): 2543-2553, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28252967

RESUMO

The magnetic properties of the Rieske protein purified from Chlorobaculum tepidum were investigated using electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy (HYSCORE). The g-values of the Fe2S2 center were gx = 1.81, gy = 1.90, and gz = 2.03. Four classes of nitrogen signals were obtained by HYSCORE. Nitrogens 1 and 2 had relatively strong magnetic hyperfine couplings and were assigned as the nitrogen directly ligated to Fe. Nitrogens 3 and 4 had relatively weak magnetic hyperfine couplings and were assigned as the other nitrogen of the His ligands and peptide nitrogen connected to the sulfur atom via hydrogen bonding, respectively. The anisotropy of nitrogen 3 reflects the different spin density distributions on the His ligands, which influences the electron transfer to quinone.


Assuntos
Proteínas de Bactérias/química , Chlorobi/química , Complexo III da Cadeia de Transporte de Elétrons/química , Benzoquinonas/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ligação de Hidrogênio , Ferro/química , Ligantes , Modelos Moleculares , Nitrogênio/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA