Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 120: 222-232, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34838986

RESUMO

l-amino acid oxidases (LAOs) catalyze the oxidative deamination of l-amino acid and generate α-keto acid, ammonia, and hydrogen peroxide as byproducts. LAOs showed the variety of bioactivity by the resulting hydrogen peroxide. The serum of the red-spotted grouper Epinephelus akaara contains an LAO (Ea-LAO) with the potential to kill bacterial pathogens Aeromonas salmonicida and Vibrio anguillarum via hydrogen peroxide. However, it is unknown how the grouper tolerates the harmful effects of the serum Ea-LAO byproducts. In this study, we analyzed the kinetics of fish LAOs to understand how they escape the toxicity of byproducts. The LAO activity of grouper serum was suppressed in low-salt solutions such as NaCl, CaCl2, MgCl2, and diluted seawater. The activity was non-linearly increased and fitted to the four-parameter log-logistic model. The EC50 of the seawater was calculated to have a 0.72-fold concentration. This result suggested that the Ea-LAO could be activated by mixing with seawater. The results of circular dichroism spectroscopy showed that the α helix content was estimated to be 12.1% and 5.3% in a salt-free buffer (inactive condition) and the original concentration of seawater (active condition), respectively, indicating that the secondary structure of the Ea-LAO in the active condition was randomized. In addition, the Ea-LAO showed reversible LAO activity regulation according to the salt concentration in the environment. Taken together, this indicates that the Ea-LAO is normally on standby as an inactive form, and it could activate as a host-defense molecule to avoid pathogen invasion via a wound when mixed with seawater.


Assuntos
Bass , L-Aminoácido Oxidase/metabolismo , Água do Mar , Animais , Bass/imunologia , Proteínas de Peixes/metabolismo , Peróxido de Hidrogênio
2.
Ecotoxicol Environ Saf ; 234: 113401, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35298967

RESUMO

To study the toxicity of 3-hydroxybenzo[c]phenanthrene (3-OHBcP), a metabolite of benzo[c]phenanthrene (BcP), first we compared it with its parent compound, BcP, using an in ovo-nanoinjection method in Japanese medaka. Second, we examined the influence of 3-OHBcP on bone metabolism using goldfish. Third, the detailed mechanism of 3-OHBcP on bone metabolism was investigated using zebrafish and goldfish. The LC50s of BcP and 3-OHBcP in Japanese medaka were 5.7 nM and 0.003 nM, respectively, indicating that the metabolite was more than 1900 times as toxic as the parent compound. In addition, nanoinjected 3-OHBcP (0.001 nM) induced skeletal abnormalities. Therefore, fish scales with both osteoblasts and osteoclasts on the calcified bone matrix were examined to investigate the mechanisms of 3-OHBcP toxicity on bone metabolism. We found that scale regeneration in the BcP-injected goldfish was significantly inhibited as compared with that in control goldfish. Furthermore, 3-OHBcP was detected in the bile of BcP-injected goldfish, indicating that 3-OHBcP metabolized from BcP inhibited scale regeneration. Subsequently, the toxicity of BcP and 3-OHBcP to osteoblasts was examined using an in vitro assay with regenerating scales. The osteoblastic activity in the 3-OHBcP (10-10 to 10-7 M)-treated scales was significantly suppressed, while BcP (10-11 to 10-7 M)-treated scales did not affect osteoblastic activity. Osteoclastic activity was unchanged by either BcP or 3-OHBcP treatment at each concentration (10-11 to 10-7 M). The detailed toxicity of 3-OHBcP (10-9 M) in osteoblasts was then examined using gene expression analysis on a global scale with fish scales. Eight genes, including APAF1, CHEK2, and FOS, which are associated with apoptosis, were identified from the upregulated genes. This indicated that 3-OHBcP treatment induced apoptosis in fish scales. In situ detection of cell death by TUNEL methods was supported by gene expression analysis. This study is the first to demonstrate that 3-OHBcP, a metabolite of BcP, has greater toxicity than the parent compound, BcP.

3.
Biochemistry (Mosc) ; 86(10): 1192-1200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903151

RESUMO

Omeprazole suppresses excessive secretion of gastric acid via irreversible inhibition of H+/K+-ATPase in the gastric parietal cells. Recent meta-analysis of data revealed an association between the use of proton pump inhibitors (PPIs) and increased risk of bone fractures, but the underlying molecular mechanism of PPI action remains unclear. In this study, we demonstrated that omeprazole directly influences bone metabolism using a unique in vitro bioassay system with teleost scales, as well as the in vivo model. The in vitro study showed that omeprazole significantly increased the activities of alkaline phosphatase and tartrate-resistant acid phosphatase after 6 h of incubation with this PPI. Expression of mRNAs for several osteoclastic markers was upregulated after 3-h incubation of fish scales with 10-7 M omeprazole. The in vivo experiments revealed that the plasma calcium levels significantly increased in the omeprazole-treated group. The results of in vitro and in vivo studies suggest that omeprazole affects bone cells by increasing bone resorption by upregulating expression of osteoclastic genes and promoting calcium release to the circulation. The suggested in vitro bioassay in fish scales is a practical model that can be used to study the effects of drugs on bone metabolism.


Assuntos
Escamas de Animais/efeitos dos fármacos , Carpa Dourada/metabolismo , Omeprazol/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Escamas de Animais/citologia , Escamas de Animais/metabolismo , Animais , Antiulcerosos/farmacologia , Cálcio/metabolismo , Linfocinas/metabolismo , Modelos Animais , Osteoblastos/metabolismo , Osteoclastos/metabolismo
4.
Fish Shellfish Immunol ; 106: 685-690, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822860

RESUMO

An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.


Assuntos
Peixes/imunologia , L-Aminoácido Oxidase/imunologia , Animais , Peixes/genética , Brânquias/imunologia , Imunomodulação , Intestinos/imunologia , L-Aminoácido Oxidase/sangue , L-Aminoácido Oxidase/genética , Pele/imunologia
5.
Mar Drugs ; 18(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033203

RESUMO

The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), ß-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.


Assuntos
Galectina 3/imunologia , Galectina 3/metabolismo , Moritella/efeitos dos fármacos , Muco/metabolismo , Aglutinação , Animais , Proteínas de Transporte , Proteínas de Peixes , Galectina 3/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Imunidade Inata , Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteoma , Salmo salar/metabolismo , Pele/metabolismo
6.
Gen Comp Endocrinol ; 262: 99-105, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574148

RESUMO

We examined the effects of α-melanocyte-stimulating hormone (α-MSH) on bone metabolism using regenerating goldfish scales. Normally developed scales on the bodies of goldfish were removed to allow the regeneration of scales under anesthesia. Thereafter, the influence of α-MSH on the regeneration of goldfish scales was investigated in vivo. In brief, α-MSH was injected at a low dose (0.1 µg/g body weight) or a high dose (1 µg/g body weight) into goldfish every other day. Ten days after removing the scales, we collected regenerating scales and analyzed osteoblastic and osteoclastic activities as respective marker enzyme (alkaline phosphatase for osteoblasts, tartrate-resistant acid phosphatase for osteoclasts) activity in the regenerating scales as well as plasma calcium levels. At both doses, osteoblastic and osteoclastic activities in the regenerating scales increased significantly. Plasma calcium concentrations in the α-MSH-treated group (high doses) were significantly higher than those in the control group. Next, in vitro experiments were performed to confirm the results of in vivo experiments. In the cultured regenerating scales, osteoblastic and osteoclastic activities significantly increased with α-MSH (10-7 and 10-6 M) treatment. In addition, real-time PCR analysis indicated that osteoclastogenesis in α-MSH-treated scales was induced by the receptor activator of the NF-κB/receptor activator of the NF-κB ligand/osteoprotegerin pathway. Furthermore, we found that α-MSH receptors (melanocortin receptors 4 and 5) were detected in the regenerating scales. Thus, in teleosts, we are the first to demonstrate that α-MSH functions in bone metabolism and promotes bone resorption via melatonin receptors 4 and/or 5.


Assuntos
Reabsorção Óssea/patologia , Carpa Dourada/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , alfa-MSH/farmacologia , Fosfatase Alcalina/metabolismo , Escamas de Animais/metabolismo , Animais , Reabsorção Óssea/genética , Cálcio/sangue , Cálcio/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Carpa Dourada/sangue , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos
7.
Fish Shellfish Immunol ; 68: 452-457, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743623

RESUMO

This study presents the first report of purification of natterin-like protein (Nlp) in a non-venomous fish. The peptide identities of purified cod Nlp were confirmed through LC-MSMS and matched to a cod expressed sequence tag (EST). A partial cod nlp nucleotide sequence was amplified and sequenced based on this EST. Multiple sequence alignment of cod Nlp showed considerable homology with other teleost Nlps and the presence of an N-terminal jacalin-like lectin domain coupled with a C-terminal toxin domain. nlp expression was higher in skin, head kidney, liver and spleen than in other tissues studied. Hemaggluttination of horse red blood cells by Nlp was calcium dependent and inhibited by mannose. A Vibrio anguillarum bath challenge however, did not alter the expression of cod nlp transcripts in the skin and gills. Further functional characterization is required to establish the significance of this unique protein in Atlantic cod and other teleosts.


Assuntos
Doenças dos Peixes/imunologia , Gadus morhua , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Muco/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Gadus morhua/genética , Gadus morhua/imunologia , Lectina de Ligação a Manose/química , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia
8.
BMC Genomics ; 16: 258, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25886855

RESUMO

BACKGROUND: Rana pirica tadpoles show morphological changes in response to a predation threat: larvae of the dragonfly Aeshna nigroflava induce heightened tail depth, whereas larval salamander Hynobius retardatus induce a bulgy morphology with heightened tail depth. Although both predators induce similar tail morphologies, it is possible that there are functional differences between these tail morphs. RESULTS: Here, we performed a discriminant microarray analysis using Xenopus laevis genome arrays to compare tail tissues of control and predator-exposed tadpoles. We identified 9 genes showing large-scale changes in their expression profile: ELAV-like1, methyltransferase like 7A, dolichyl-phosphate mannosyltransferase, laminin subunit beta-1, gremlin 1, BCL6 corepressor-like 1, and three genes of unknown identity. A further 80 genes showed greater than 5 fold differences in expression after exposure to dragonfly larvae and 81 genes showed altered expression after exposure to larval salamanders. Predation-threat responsive genes were identified by selecting genes that reverted to control levels of expression following removal of the predator. Thirteen genes were induced specifically by dragonfly larvae, nine others were salamander-specific, and sixteen were induced by both. Functional analyses indicated that some of the genes induced by dragonfly larvae caused an increase in laminins necessary for cell adhesion in the extracellular matrix. The higher expression of gremlin 1 and HIF1a genes after exposure to dragonfly larvae indicated an in vivo hypoxic reaction, while down-regulation of syndecan-2 may indicate impairment of angiogenesis. Exposure to larval salamanders caused down-regulation of XCIRP-1, which is known to inhibit expression of adhesion molecules; the tadpoles showed reduced expression of cα(E)-catenin, small muscle protein, dystrophin, and myosin light chain genes. CONCLUSION: The connective tissue of tadpoles exposed to larval salamanders may be looser. The differences in gene expression profiles induced by the two predators suggest that there are functional differences between the altered tail tissues of the two groups of tadpoles.


Assuntos
Tecido Conjuntivo/metabolismo , Cadeia Alimentar , Larva/metabolismo , Ranidae/anatomia & histologia , Ranidae/genética , Estresse Psicológico/metabolismo , Cauda/anatomia & histologia , Transcriptoma , Animais , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Ranidae/crescimento & desenvolvimento , Ranidae/fisiologia , Cauda/fisiologia , Urodelos/crescimento & desenvolvimento , Urodelos/fisiologia
9.
Sci Rep ; 13(1): 7591, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164992

RESUMO

This study is the first to demonstrate that deep ocean water (DOW) has physiological significant effects on squid. After 36 h of rearing squids, those reared with DOW had significantly higher total and free cholesterol levels and lower alanine transaminase activity in hemolymph as compared with those reared with surface sea water (SSW). SSW rearing also resulted in 6.95% weight loss, while DOW rearing caused only 2.5% weight loss, which might be due to liver metabolism suppression. Furthermore, both monovalent (sodium, chloride, and potassium ions) and divalent (calcium, inorganic phosphorus, and magnesium ions) ions in hemolymph were elevated when reared with DOW compared to those when reared with SSW. A study of genes expressed in the brain revealed that five genes were specifically remarked in DOW rearing. Most altered genes were neuropeptides, including those from vasopressin superfamily. These neuropeptides are involved in cholesterol and/or mineral metabolisms and physiological significant effects on squid. This study is the first report the effects of DOW on cholesterol and mineral metabolism of squid and will contribute to squid aquaculture using DOW.


Assuntos
Decapodiformes , Água , Animais , Decapodiformes/genética , Colesterol , Oceanos e Mares , Minerais
10.
Sci Rep ; 13(1): 6299, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072482

RESUMO

Beard worms from the family Siboglinidae, are peculiar animals and are known for their symbiotic relationships with sulfur bacteria. Most Siboglinids inhabit the deep-sea floor, thus making difficult to make any observations in situ. One species, Oligobrachia mashikoi, occurs in the shallow depths (24.5 m) of the Sea of Japan. Taking advantage of its shallow-water habitat, the first ecological survey of O. mashikoi was performed over a course of 7 years, which revealed that its tentacle-expanding behavior was dependent on the temperature and illuminance of the sea water. Furthermore, there were significantly more O. mashikoi with expanding tentacles during the nighttime than during the daytime, and the prevention of light eliminated these differences in the number of expending tentacles. These results confirmed that the tentacle-expanding behavior is controlled by environmental light signals. Consistent with this, we identified a gene encoding a photoreceptor molecule, neuropsin, in O. mashikoi, and the expression thereof is dependent on the time of day. We assume that the described behavioral response of O. mashikoi to light signals represent an adaptation to a shallow-water environment within the predominantly deep-sea taxon.


Assuntos
Poliquetos , Água , Animais , Água do Mar , Adaptação Fisiológica , Ecossistema , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA