Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2305460120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856547

RESUMO

Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.


Assuntos
Potenciação de Longa Duração , Neocórtex , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Neurônios , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia
2.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38724283

RESUMO

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.


Assuntos
Potenciais de Ação , Células-Tronco Pluripotentes Induzidas , Neurônios , Terminações Pré-Sinápticas , Sinapses , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica/fisiologia , Células Cultivadas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia
3.
Brain ; 145(11): 3787-3802, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35022694

RESUMO

Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release. To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Šresolution and by comparison to its mammalian homologue ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E, R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST. We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.


Assuntos
Drosophila melanogaster , Retinose Pigmentar , Animais , Humanos , Cognição , Mutação , Terminações Pré-Sinápticas , Retinose Pigmentar/genética , Transmissão Sináptica , Proteínas de Drosophila/genética
4.
BMC Biol ; 19(1): 227, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663304

RESUMO

BACKGROUND: Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS: Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS: PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.


Assuntos
AMP Cíclico , Optogenética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Drosophila/metabolismo , Luz , Transdução de Sinais
5.
J Exp Biol ; 222(Pt 19)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31488622

RESUMO

The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Locomoção/genética , Longevidade/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Sinapsinas/metabolismo , Animais , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Drosophila melanogaster/genética , Larva/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Fosfosserina/metabolismo , Isoformas de Proteínas/metabolismo , Sinapsinas/genética
6.
Proc Natl Acad Sci U S A ; 111(38): 13972-7, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201989

RESUMO

Channelrhodopsin-2 (ChR2) has provided a breakthrough for the optogenetic control of neuronal activity. In adult Drosophila melanogaster, however, its applications are severely constrained. This limitation in a powerful model system has curtailed unfolding the full potential of ChR2 for behavioral neuroscience. Here, we describe the D156C mutant, termed ChR2-XXL (extra high expression and long open state), which displays increased expression, improved subcellular localization, elevated retinal affinity, an extended open-state lifetime, and photocurrent amplitudes greatly exceeding those of all heretofore published ChR variants. As a result, neuronal activity could be efficiently evoked with ambient light and even without retinal supplementation. We validated the benefits of the variant in intact flies by eliciting simple and complex behaviors. We demonstrate efficient and prolonged photostimulation of monosynaptic transmission at the neuromuscular junction and reliable activation of a gustatory reflex pathway. Innate male courtship was triggered in male and female flies, and olfactory memories were written through light-induced associative training.


Assuntos
Potenciais Evocados Visuais , Mutação de Sentido Incorreto , Neurônios/metabolismo , Rodopsina/metabolismo , Transmissão Sináptica , Substituição de Aminoácidos , Animais , Feminino , Masculino , Rodopsina/genética
7.
Handb Exp Pharmacol ; 234: 221-247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832490

RESUMO

Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Mecanotransdução Celular , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Moléculas de Adesão Celular/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Estresse Mecânico , Relação Estrutura-Atividade
8.
Handb Exp Pharmacol ; 234: 83-109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832485

RESUMO

Proteolytic processing events in adhesion GPCRs. aGPCRs can undergo multiple autoproteolytic (red asterisks) and proteolytic processing events by exogenous proteases (yellow asterisks) that may be involved in signaling events of the receptors. Proteolytic processing is an unusual property of adhesion family G protein-coupled receptors (aGPCRs) that was observed upon their cloning and biochemical characterization.Ever since, much effort has been dedicated to delineate the mechanisms and requirements for cleavage events in the control of aGPCR function. Most notably, all aGPCRs possess a juxtamembrane protein fold, the GPCR autoproteolysis-inducing (GAIN) domain, which operates as an autoprotease for many aGPCR homologs investigated thus far. Analysis of its autoproteolytic reaction, the consequences for receptor fate and function, and the allocation of physiological effects to this peculiar feature of aGPCRs has occupied the experimental agenda of the aGPCR field and shaped our current understanding of the signaling properties and cell biological effects of aGPCRs. Interestingly, individual aGPCRs may undergo additional proteolytic steps, one of them resulting in shedding of the entire ectodomain that is secreted and can function independently. Here, we summarize the current state of knowledge on GAIN domain-mediated and GAIN domain-independent aGPCR cleavage events and their significance for the pharmacological and cellular actions of aGPCRs. Further, we compare and contrast the proteolytic profile of aGPCRs with known signaling routes that are governed through proteolysis of surface molecules such as the Notch and ephrin pathways.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Relação Estrutura-Atividade
9.
Nat Commun ; 14(1): 2993, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225688

RESUMO

To survive, animals must recognize reoccurring stimuli. This necessitates a reliable stimulus representation by the neural code. While synaptic transmission underlies the propagation of neural codes, it is unclear how synaptic plasticity can maintain coding reliability. By studying the olfactory system of Drosophila melanogaster, we aimed to obtain a deeper mechanistic understanding of how synaptic function shapes neural coding in the live, behaving animal. We show that the properties of the active zone (AZ), the presynaptic site of neurotransmitter release, are critical for generating a reliable neural code. Reducing neurotransmitter release probability of olfactory sensory neurons disrupts both neural coding and behavioral reliability. Strikingly, a target-specific homeostatic increase of AZ numbers rescues these defects within a day. These findings demonstrate an important role for synaptic plasticity in maintaining neural coding reliability and are of pathophysiological interest by uncovering an elegant mechanism through which the neural circuitry can counterbalance perturbations.


Assuntos
Drosophila melanogaster , Plasticidade Neuronal , Animais , Reprodutibilidade dos Testes , Homeostase , Neurotransmissores
10.
J Cell Biol ; 177(5): 843-55, 2007 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-17548512

RESUMO

Synapses can undergo rapid changes in size as well as in their vesicle release function during both plasticity processes and development. This fundamental property of neuronal cells requires the coordinated rearrangement of synaptic membranes and their associated cytoskeleton, yet remarkably little is known of how this coupling is achieved. In a GFP exon-trap screen, we identified Drosophila melanogaster Basigin (Bsg) as an immunoglobulin domain-containing transmembrane protein accumulating at periactive zones of neuromuscular junctions. Bsg is required pre- and postsynaptically to restrict synaptic bouton size, its juxtamembrane cytoplasmic residues being important for that function. Bsg controls different aspects of synaptic structure, including distribution of synaptic vesicles and organization of the presynaptic cortical actin cytoskeleton. Strikingly, bsg function is also required specifically within the presynaptic terminal to inhibit nonsynchronized evoked vesicle release. We thus propose that Bsg is part of a transsynaptic complex regulating synaptic compartmentalization and strength, and coordinating plasma membrane and cortical organization.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Glicoproteínas de Membrana/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Sequência de Aminoácidos , Animais , Adesão Celular , Compartimento Celular , Regulação para Baixo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Junção Neuromuscular/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sinapses/metabolismo
11.
Nat Neurosci ; 11(6): 659-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18469810

RESUMO

The subunit composition of postsynaptic non-NMDA-type glutamate receptors (GluRs) determines the function and trafficking of the receptor. Changes in GluR composition have been implicated in the homeostasis of neuronal excitability and synaptic plasticity underlying learning. Here, we imaged GluRs in vivo during the formation of new postsynaptic densities (PSDs) at Drosophila neuromuscular junctions coexpressing GluRIIA and GluRIIB subunits. GluR composition was independently regulated at directly neighboring PSDs on a submicron scale. Immature PSDs typically had large amounts of GluRIIA and small amounts of GluRIIB. During subsequent PSD maturation, however, the GluRIIA/GluRIIB composition changed and became more balanced. Reducing presynaptic glutamate release increased GluRIIA, but decreased GluRIIB incorporation. Moreover, the maturation of GluR composition correlated in a site-specific manner with the level of Bruchpilot, an active zone protein that is essential for mature glutamate release. Thus, we show that an activity-dependent, site-specific control of GluR composition can contribute to match pre- and postsynaptic assembly.


Assuntos
Regulação da Expressão Gênica/fisiologia , Junção Neuromuscular/metabolismo , Receptores de AMPA/fisiologia , Animais , Animais Geneticamente Modificados , Simulação por Computador , Drosophila , Proteínas de Drosophila , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Recuperação de Fluorescência Após Fotodegradação/métodos , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Mutação/fisiologia , Técnicas de Patch-Clamp , Transporte Proteico/fisiologia , Receptores de AMPA/genética , Fatores de Tempo
12.
J Neurosci ; 30(17): 5811-24, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20427642

RESUMO

Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Guanilato Quinases/metabolismo , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Alelos , Animais , Animais Geneticamente Modificados , Proteínas de Arabidopsis/genética , Proteínas de Drosophila , Guanilato Quinases/genética , Imageamento Tridimensional , Microscopia Confocal , Mutação , Junção Neuromuscular/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Receptores de Glutamato/metabolismo , Homologia de Sequência , Espectrina/metabolismo , Transmissão Sináptica/fisiologia
13.
J Neurosci ; 30(43): 14340-5, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980589

RESUMO

At presynaptic active zones (AZs), the frequently observed tethering of synaptic vesicles to an electron-dense cytomatrix represents a process of largely unknown functional significance. Here, we identified a hypomorphic allele, brpnude, lacking merely the last 1% of the C-terminal amino acids (17 of 1740) of the active zone protein Bruchpilot. In brpnude, electron-dense bodies were properly shaped, though entirely bare of synaptic vesicles. While basal glutamate release was unchanged, paired-pulse and sustained stimulation provoked depression. Furthermore, rapid recovery following sustained release was slowed. Our results causally link, with intramolecular precision, the tethering of vesicles at the AZ cytomatrix to synaptic depression.


Assuntos
Proteínas de Drosophila/genética , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/fisiologia , Animais , Sequência de Bases , Canais de Cálcio/metabolismo , Citoplasma/metabolismo , Drosophila , Estimulação Elétrica , Eletrofisiologia , Cinética , Larva , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp
14.
Cell Rep ; 37(1): 109770, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610300

RESUMO

Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.


Assuntos
Drosophila melanogaster/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Análise por Conglomerados , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Larva/metabolismo , Microscopia de Fluorescência , Junção Neuromuscular/metabolismo , Poliaminas/farmacologia , Receptores Ionotrópicos de Glutamato/deficiência , Receptores Ionotrópicos de Glutamato/genética , Transmissão Sináptica/efeitos dos fármacos , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo
15.
Curr Biol ; 31(18): 4076-4087.e5, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34329588

RESUMO

Animals need to balance competitive behaviors to maintain internal homeostasis. The underlying mechanisms are complex but typically involve neuroendocrine signaling. Using Drosophila, we systematically manipulated signaling between energy-mobilizing endocrine cells producing adipokinetic hormone (AKH), octopaminergic neurons, and the energy-storing fat body to assess whether this neuroendocrine axis involved in starvation-induced hyperactivity also balances activity levels under ad libitum access to food. Our results suggest that AKH signals via two divergent pathways that are mutually competitive in terms of activity and rest. AKH increases activity via the octopaminergic system during the day, while it prevents high activity levels during the night by signaling to the fat body. This regulation involves feedback signaling from octopaminergic neurons to AKH-producing cells (APCs). APCs are known to integrate a multitude of metabolic and endocrine signals. Our results add a new facet to the versatile regulatory functions of APCs by showing that their output contributes to shape the daily activity pattern under ad libitum access to food.


Assuntos
Hormônios de Inseto , Inanição , Animais , Drosophila/metabolismo , Homeostase , Hormônios de Inseto/metabolismo , Neurônios/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Transdução de Sinais , Inanição/metabolismo
16.
Sci Rep ; 10(1): 17614, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077824

RESUMO

Invertebrates such as Drosophila melanogaster have proven to be a valuable model organism for studies of the nervous system. In order to control neuronal activity, optogenetics has evolved as a powerful technique enabling non-invasive stimulation using light. This requires light sources that can deliver patterns of light with high temporal and spatial precision. Currently employed light sources for stimulation of small invertebrates, however, are either limited in spatial resolution or require sophisticated and bulky equipment. In this work, we used smartphone displays for optogenetic control of Drosophila melanogaster. We developed an open-source smartphone app that allows time-dependent display of light patterns and used this to activate and inhibit different neuronal populations in both larvae and adult flies. Characteristic behavioural responses were observed depending on the displayed colour and brightness and in agreement with the activation spectra and light sensitivity of the used channelrhodopsins. By displaying patterns of light, we constrained larval movement and were able to guide larvae on the display. Our method serves as a low-cost high-resolution testbench for optogenetic experiments using small invertebrate species and is particularly appealing to application in neuroscience teaching labs.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Optogenética/métodos , Estimulação Luminosa/métodos , Smartphone , Animais , Channelrhodopsins/genética , Neurônios/fisiologia
17.
Elife ; 92020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32996461

RESUMO

Adhesion-type GPCRs (aGPCRs) participate in a vast range of physiological processes. Their frequent association with mechanosensitive functions suggests that processing of mechanical stimuli may be a common feature of this receptor family. Previously, we reported that the Drosophila aGPCR CIRL sensitizes sensory responses to gentle touch and sound by amplifying signal transduction in low-threshold mechanoreceptors (Scholz et al., 2017). Here, we show that Cirl is also expressed in high-threshold mechanical nociceptors where it adjusts nocifensive behaviour under physiological and pathological conditions. Optogenetic in vivo experiments indicate that CIRL lowers cAMP levels in both mechanosensory submodalities. However, contrasting its role in touch-sensitive neurons, CIRL dampens the response of nociceptors to mechanical stimulation. Consistent with this finding, rat nociceptors display decreased Cirl1 expression during allodynia. Thus, cAMP-downregulation by CIRL exerts opposing effects on low-threshold mechanosensors and high-threshold nociceptors. This intriguing bipolar action facilitates the separation of mechanosensory signals carrying different physiological information.


Assuntos
Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiologia , Mecanotransdução Celular/genética , Nociceptividade , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Potenciais de Ação/fisiologia , Animais , Drosophila melanogaster , Masculino , Ratos , Ratos Wistar
18.
Nat Neurosci ; 8(7): 898-905, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16136672

RESUMO

Insight into how glutamatergic synapses form in vivo is important for understanding developmental and experience-triggered changes of excitatory circuits. Here, we imaged postsynaptic densities (PSDs) expressing a functional, GFP-tagged glutamate receptor subunit (GluR-IIA(GFP)) at neuromuscular junctions of Drosophila melanogaster larvae for several days in vivo. New PSDs, associated with functional and structural presynaptic markers, formed independently of existing synapses and grew continuously until reaching a stable size within hours. Both in vivo photoactivation and photobleaching experiments showed that extrasynaptic receptors derived from diffuse, cell-wide pools preferentially entered growing PSDs. After entering PSDs, receptors were largely immobilized. In comparison, other postsynaptic proteins tested (PSD-95, NCAM and PAK homologs) exchanged faster and with no apparent preference for growing synapses. We show here that new glutamatergic synapses form de novo and not by partitioning processes from existing synapses, suggesting that the site-specific entry of particular glutamate receptor complexes directly controls the assembly of individual PSDs.


Assuntos
Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Drosophila melanogaster , Proteínas de Fluorescência Verde , Larva , Substâncias Luminescentes , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Receptores de AMPA/metabolismo
19.
J Cell Biol ; 218(3): 1011-1026, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782781

RESUMO

Information processing by the nervous system depends on neurotransmitter release from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures via largely unknown protein interactions. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila melanogaster CAZ, participates in SV tethering. Here, we identify the conserved SNARE regulator Complexin (Cpx) in an in vivo screen for molecules that link the Brp C terminus to SVs. Brp and Cpx interact genetically and functionally. Both proteins promote SV recruitment to the Drosophila CAZ and counteract short-term synaptic depression. Analyzing SV tethering to active zone ribbons of cpx3 knockout mice supports an evolutionarily conserved role of Cpx upstream of SNARE complex assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/genética
20.
Neurosci Res ; 127: 14-24, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29258853

RESUMO

In a constantly changing environment, neuronal circuits need to be updated and adjusted to elicit directed actions. Synaptic plasticity plays an important role in modulating such globally and locally acting networks. The active zone (AZ) is a protein-rich compartment of chemical synapses, where precisely orchestrated molecular interactions control synaptic vesicle (SV) fusion with the presynaptic membrane. The subsequent release of neurotransmitter substances onto postsynaptic receptor fields forms the basis of neuronal communication. Structural, functional and molecular features of AZs can differ significantly between systems, within one and the same neuron and at an individual site over time. Moreover, the properties of an AZ can be altered by changes in cellular activity. While it is recognized that such AZ plasticity modulates synaptic communication, our mechanistic understanding of its impact on neural network function and animal behaviour is far from complete. Research on Drosophila melanogaster has created an advantageous situation for investigating molecular mechanisms of AZ physiology in a behavioural context. The sophisticated genetic tools and excellent experimental accessibility of the fruit fly can now be combined with detailed anatomical information on the nervous system and quantifiable readouts of various behaviours at high resolution. Here, we review molecular studies of AZ structure and function at the neuromuscular junction (NMJ) and consider how mechanisms identified in the periphery may relate to the operation of central AZs. Our discussion emphasizes that the location of AZs in central networks defines sites of plasticity which shape animal behaviour.


Assuntos
Comportamento Animal/fisiologia , Junção Neuromuscular/citologia , Junção Neuromuscular/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Memória/fisiologia , Modelos Moleculares , Vias Neurais/fisiologia , Junção Neuromuscular/genética , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA