Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329130

RESUMO

BACKGROUNDIdentifying factors that predict the timing of HIV rebound after treatment interruption will be crucial for designing and evaluating interventions for HIV remission.METHODSWe performed a broad evaluation of viral and immune factors that predict viral rebound (AIDS Clinical Trials Group A5345). Participants initiated antiretroviral therapy (ART) during chronic (N = 33) or early (N = 12) HIV infection with ≥ 2 years of suppressive ART and restarted ART if they had 2 viral loads ≥ 1,000 copies/mL after treatment interruption.RESULTSCompared with chronic-treated participants, early-treated individuals had smaller and fewer transcriptionally active HIV reservoirs. A higher percentage of HIV Gag-specific CD8+ T cell cytotoxic response was associated with lower intact proviral DNA. Predictors of HIV rebound timing differed between early- versus chronic-treated participants, as the strongest reservoir predictor of time to HIV rebound was level of residual viremia in early-treated participants and intact DNA level in chronic-treated individuals. We also identified distinct sets of pre-treatment interruption viral, immune, and inflammatory markers that differentiated participants who had rapid versus slow rebound.CONCLUSIONThe results provide an in-depth overview of the complex interplay of viral, immunologic, and inflammatory predictors of viral rebound and demonstrate that the timing of ART initiation modifies the features of rapid and slow viral rebound.TRIAL REGISTRATIONClinicalTrials.gov NCT03001128FUNDINGNIH National Institute of Allergy and Infectious Diseases, Merck.


Assuntos
Infecções por HIV , Humanos , Provírus/genética , Linfócitos T CD8-Positivos , Carga Viral , DNA
3.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034605

RESUMO

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

4.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957382

RESUMO

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Masculino , Feminino , HIV-1/genética , Viremia , Provírus/genética , Provírus/metabolismo , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , RNA Viral , Carga Viral
5.
medRxiv ; 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262089

RESUMO

Clinical features of SARS-CoV-2 Omicron variant infection, including incubation period and transmission rates, distinguish this variant from preceding variants. However, whether the duration of shedding of viable virus differs between omicron and previous variants is not well understood. To characterize how variant and vaccination status impact shedding of viable virus, we serially sampled symptomatic outpatients newly diagnosed with COVID-19. Anterior nasal swabs were tested for viral load, sequencing, and viral culture. Time to PCR conversion was similar between individuals infected with the Delta and the Omicron variant. Time to culture conversion was also similar, with a median time to culture conversion of 6 days (interquartile range 4-8 days) in both groups. There were also no differences in time to PCR or culture conversion by vaccination status.

6.
medRxiv ; 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35262094

RESUMO

There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.

7.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214224

RESUMO

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Assuntos
Vacinas contra a AIDS , COVID-19 , Vacinas contra Influenza , Vacinas contra Papillomavirus , Vacinas contra Vírus Sincicial Respiratório , Vacinas contra a SAIDS , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BCG , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Convalescença , Vacina contra Difteria, Tétano e Coqueluche , Humanos , Vacina contra Sarampo-Caxumba-Rubéola , Testes de Neutralização , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA