RESUMO
Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.
RESUMO
A series of substituted derivatives of tetraaza[7]helicenes were synthesized and the influence of the substitution on their photophysical and photoredox-catalytic properties was studied. The combination of their high fluorescence quantum yields of up to 0.65 and their circularly polarized luminescence (CPL) activity results in CPL brightness values (BCPL ) that are among the highest recorded for [7]helicenes so far. A sulfonylation/hetarylation reaction using cyanopyridines as substrates for photoinduced electron transfer (PET) from the excited helicenes was conducted to test for viability in photoredox catalysis. DFT calculations predict the introduction of electron withdrawing substituents to yield more oxidizing catalysts.
RESUMO
Photoactive chromium(III) complexes saw a conceptual breakthrough with the discovery of the prototypical molecular ruby mer-[Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine), which shows intense long-lived near-infrared (NIR) phosphorescence from metal-centered spin-flip states. In contrast to the numerous studies on chromium(III) photophysics, only 10 luminescent molybdenum(III) complexes have been reported so far. Here, we present the synthesis and characterization of mer-MoX3(ddpd) (1, X = Cl; 2, X = Br) and cisfac-[Mo(ddpd)2]3+ (cisfac-[3]3+), an isomeric heavy homologue of the prototypical molecular ruby. For cisfac-[3]3+, we found strong zero-field splitting using magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy. Electronic spectra covering the spin-forbidden transitions show that the spin-flip states in mer-1, mer-2, and cisfac-[3]3+ are much lower in energy than those in comparable chromium(III) compounds. While all three complexes show weak spin-flip phosphorescence in NIR-II, the emission of cisfac-[3]3+ peaking at 1550 nm is particularly low in energy. Femtosecond transient absorption spectroscopy reveals a short excited-state lifetime of 1.4 ns, 6 orders of magnitude shorter than that of mer-[Cr(ddpd)2]3+. Using density functional theory and ab initio multireference calculations, we break down the reasons for this disparity and derive principles for the design of future stable photoactive molybdenum(III) complexes.
RESUMO
Transition metal complexes with photoactive charge-transfer excited states are pervasive throughout the literature. In particular, [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine), with its metal-to-ligand charge-transfer emission, has been established as a key complex. Meanwhile, interest in so-called spin-flip metal-centered states has risen dramatically after the molecular ruby [Cr(ddpd)2 ]3+ (ddpd=N,N'-dimethyl-N,N'-dipyridin-2-yl-pyridine-2,6-diamine) led to design principles to access strong, long-lived emission from photostable chromium(III) complexes. This Review contrasts the properties of emissive charge-transfer and spin-flip states by using [Ru(bpy)3 ]2+ and [Cr(ddpd)2 ]3+ as prototypical examples. We discuss the relevant excited states, the tunability of their energy and lifetimes, and their response to external stimuli. Finally, we identify strengths and weaknesses of charge-transfer and spin-flip states in applications such as photocatalysis and circularly polarized luminescence.
RESUMO
While photochemical transformations with sunlight almost exclusively utilize the UV-vis part of the solar spectrum, the majority of the photons emitted by the sun have frequencies in the near-infrared region. Phthalocyanines show high structural similarity to the naturally occurring light-harvesting porphyrins, chlorins, and mainly bacteriochlorins and are also known for being efficient and affordable near-infrared light absorbers as well as triplet sensitizers for the production of singlet oxygen. Although having been neglected for a long time in synthetic organic chemistry due to their low solubility and high tendency toward aggregation, their unique photophysical properties and chemical robustness make phthalocyanines attractive photocatalysts for the application in near-infrared-light-driven synthesis strategies. Herein, we report a cheap, simple, and efficient photocatalytic protocol, which is easily scalable under continuous-flow conditions. Various phthalocyanines were studied as near-infrared photosensitizers in oxidative cyanations of tertiary amines to generate α-aminonitriles, a synthetically versatile compound class.
Assuntos
Compostos Organometálicos , Indóis/química , Isoindóis , Compostos Organometálicos/química , Fármacos Fotossensibilizantes , Compostos de ZincoRESUMO
Sensitized triplet-triplet annihilation upconversion (sTTA-UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first-row transition metals are only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2 ]3+ (bpmp=2,6-bis(2-pyridylmethyl)pyridine) containing earth-abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10-diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet-triplet energy transfer from excited [Cr(bpmp)2 ]3+ to DPA gives 3 DPA with close-to-unity quantum yield. TTA of 3 DPA furnishes green-to-blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less-hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2 ]3+ and green light.
RESUMO
Objects are chiral when they cannot be superimposed with their mirror image. Materials can emit chiral light with an excess of right- or left-handed circular polarization. This circularly polarized luminescence (CPL) is key to promising future applications, such as highly efficient displays, holography, sensing, enantiospecific discrimination, synthesis of drugs, quantum computing, and cryptography. Here, a practical guide to CPL spectroscopy is provided. First, the fundamentals of the technique are laid out and a detailed account of recent experimental advances to achieve highly sensitive and accurate measurements is given, including all corrections required to obtain reliable results. Then the most common artifacts and pitfalls are discussed, especially for the study of thin films, for example, based on molecules, polymers, or halide perovskites, as opposed to dilute solutions of emitters. To facilitate the adoption by others, custom operating software is made publicly available, equipping the reader with the tools needed for successful and accurate CPL determination.
RESUMO
The chiral spin-flip luminophore [Cr(ddpd)2]3+ can be resolved into enantiopure material by chiral HPLC. The corresponding enantiomers show very high luminescence dissymmetry factors of up to â£glum â£≈ 0.093 in circularly polarized luminescence (CPL) measurements for the "ruby-like" phosphorescence transition 2E/2T1 â 4A2 in the near-IR region around λ ≈ 775 nm.