Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Child Psychiatry Hum Dev ; 47(3): 503-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26323584

RESUMO

The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.


Assuntos
Atenção/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Memória de Curto Prazo/fisiologia , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos
2.
Proc Natl Acad Sci U S A ; 107(10): 4734-9, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20176931

RESUMO

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Fatores Etários , Idoso , Algoritmos , Análise de Variância , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Fatores Sexuais , Adulto Jovem
3.
Int J Circumpolar Health ; 80(1): 1909333, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34027832

RESUMO

This video-based study examines the pragmatic non-verbal comprehension skills and corresponding neural-level findings in young Finnish autistic adults, and controls. Items from the Assessment Battery of Communication (ABaCo) were chosen to evaluate the comprehension of non-verbal communication. Inter-subject correlation (ISC) analysis of the functional magnetic resonance imaging data was used to reveal the synchrony of brain activation across participants during the viewing of pragmatically complex scenes of ABaCo videos. The results showed a significant difference between the ISC maps of the autistic and control groups in tasks involving the comprehension of non-verbal communication, thereby revealing several brain regions where correlation of brain activity was greater within the control group. The results suggest a possible weaker modulation of brain states in response to the pragmatic non-verbal communicative situations in autistic participants. Although there was no difference between the groups in behavioural responses to ABaCo items, there was more variability in the accuracy of the responses in the autistic group. Furthermore, mean answering and reaction times correlated with the severity of autistic traits. The results indicate that even if young autistic adults may have learned to use compensatory resources in their communicative-pragmatic comprehension, pragmatic processing in naturalistic situations still requires additional effort.


Assuntos
Transtorno Autístico , Compreensão , Adulto , Terapia Comportamental , Finlândia , Humanos , Imageamento por Ressonância Magnética
4.
Brain Behav ; 11(6): e02174, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998178

RESUMO

INTRODUCTION: There has been a growing effort to characterize the time-varying functional connectivity of resting state (RS) fMRI brain networks (RSNs). Although voxel-wise connectivity studies have examined different sliding window lengths, nonsequential volume-wise approaches have been less common. METHODS: Inspired by earlier co-activation pattern (CAP) studies, we applied hierarchical clustering (HC) to classify the image volumes of the RS-fMRI data on 28 adolescents with autism spectrum disorder (ASD) and their 27 typically developing (TD) controls. We compared the distribution of the ASD and TD groups' volumes in CAPs as well as their voxel-wise means. For simplification purposes, we conducted a group independent component analysis to extract 14 major RSNs. The RSNs' average z-scores enabled us to meaningfully regroup the RSNs and estimate the percentage of voxels within each RSN for which there was a significant group difference. These results were jointly interpreted to find global group-specific patterns. RESULTS: We found similar brain state proportions in 58 CAPs (clustering interval from 2 to 30). However, in many CAPs, the voxel-wise means differed significantly within a matrix of 14 RSNs. The rest-activated default mode-positive and default mode-negative brain state properties vary considerably in both groups over time. This division was seen clearly when the volumes were partitioned into two CAPs and then further examined along the HC dendrogram of the diversifying brain CAPs. The ASD group network activations followed a more heterogeneous distribution and some networks maintained higher baselines; throughout the brain deactivation state, the ASD participants had reduced deactivation in 12/14 networks. During default mode-negative CAPs, the ASD group showed simultaneous visual network and either dorsal attention or default mode network overactivation. CONCLUSION: Nonsequential volume gathering into CAPs and the comparison of voxel-wise signal changes provide a complementary perspective to connectivity and an alternative to sliding window analysis.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Análise por Conglomerados , Humanos , Vias Neurais
5.
Sci Rep ; 10(1): 21739, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303942

RESUMO

Social and pragmatic difficulties in autism spectrum disorder (ASD) are widely recognized, although their underlying neural level processing is not well understood. The aim of this study was to examine the activity of the brain network components linked to social and pragmatic understanding in order to reveal whether complex socio-pragmatic events evoke differences in brain activity between the ASD and control groups. Nineteen young adults (mean age 23.6 years) with ASD and 19 controls (mean age 22.7 years) were recruited for the study. The stimulus data consisted of video clips showing complex social events that demanded processing of pragmatic communication. In the analysis, the functional magnetic resonance imaging signal responses of the selected brain network components linked to social and pragmatic information processing were compared. Although the processing of the young adults with ASD was similar to that of the control group during the majority of the social scenes, differences between the groups were found in the activity of the social brain network components when the participants were observing situations with concurrent verbal and non-verbal communication events. The results suggest that the ASD group had challenges in processing concurrent multimodal cues in complex pragmatic communication situations.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Comunicação , Sinais (Psicologia) , Imageamento por Ressonância Magnética/métodos , Comportamento Verbal/fisiologia , Adulto , Transtorno do Espectro Autista/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
6.
Schizophr Bull ; 45(4): 835-845, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30281090

RESUMO

Development of schizophrenia relates to both genetic and environmental factors. Functional deficits in many cognitive domains, including the ability to communicate in social interactions and impaired recognition of facial expressions, are common for patients with schizophrenia and might also be present in individuals at risk of developing schizophrenia. Here we explore whether an individual's polygenic risk score (PRS) for schizophrenia is associated with the degree of interregional similarities in blood oxygen level-dependent (BOLD) signal and gray matter volume of the face-processing network and whether the exposure to early adversity moderates this association. A total of 90 individuals (mean age 22 years, both functional and structural data available) were used for discovery analyses, and 211 individuals (mean age 26 years, structural data available) were used for replication of the structural findings. Both samples were drawn from the Northern Finland Birth Cohort 1986. We found that the degree of interregional similarities in BOLD signal and gray matter volume vary as a function of PRS; lowest interregional correlation (both measures) was observed in individuals with high PRS. We also replicated the gray matter volume finding. We did not find evidence for an interaction between early adversity and PRS on the interregional correlation of BOLD signal and gray matter volume. We speculate that the observed group differences in PRS-related correlations in both modalities may result from differences in the concurrent functional engagement of the face-processing regions over time, eg, via differences in exposure to social interaction with other people.


Assuntos
Expressão Facial , Reconhecimento Facial/fisiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Substância Cinzenta/patologia , Sistema de Registros , Esquizofrenia/genética , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Percepção Social , Adulto , Experiências Adversas da Infância , Mapeamento Encefálico , Estudos de Coortes , Feminino , Finlândia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Risco , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
7.
Front Neurosci ; 13: 279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001071

RESUMO

Low image sampling rates used in resting state functional magnetic resonance imaging (rs-fMRI) may cause aliasing of the cardiorespiratory pulsations over the very low frequency (VLF) BOLD signal fluctuations which reflects to functional connectivity (FC). In this study, we examine the effect of sampling rate on currently used rs-fMRI FC metrics. Ultra-fast fMRI magnetic resonance encephalography (MREG) data, sampled with TR 0.1 s, was downsampled to different subsampled repetition times (sTR, range 0.3-3 s) for comparisons. Echo planar k-space sampling (TR 2.15 s) and interleaved slice collection schemes were also compared against the 3D single shot trajectory at 2.2 s sTR. The quantified connectivity metrics included stationary spatial, time, and frequency domains, as well as dynamic analyses. Time domain methods included analyses of seed-based functional connectivity, regional homogeneity (ReHo), coefficient of variation, and spatial domain group level probabilistic independent component analysis (ICA). In frequency domain analyses, we examined fractional and amplitude of low frequency fluctuations. Aliasing effects were spatially and spectrally analyzed by comparing VLF (0.01-0.1 Hz), respiratory (0.12-0.35 Hz) and cardiac power (0.9-1.3 Hz) FFT maps at different sTRs. Quasi-periodic pattern (QPP) of VLF events were analyzed for effects on dynamic FC methods. The results in conventional time and spatial domain analyses remained virtually unchanged by the different sampling rates. In frequency domain, the aliasing occurred mainly in higher sTR (1-2 s) where cardiac power aliases over respiratory power. The VLF power maps suffered minimally from increasing sTRs. Interleaved data reconstruction induced lower ReHo compared to 3D sampling (p < 0.001). Gradient recalled echo-planar imaging (EPI BOLD) data produced both better and worse metrics. In QPP analyses, the repeatability of the VLF pulse detection becomes linearly reduced with increasing sTR. In conclusion, the conventional resting state metrics (e.g., FC, ICA) were not markedly affected by different TRs (0.1-3 s). However, cardiorespiratory signals showed strongest aliasing in central brain regions in sTR 1-2 s. Pulsatile QPP and other dynamic analyses benefit linearly from short TR scanning.

8.
Chronobiol Int ; 34(1): 37-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27690288

RESUMO

Until now, melanopsin (OPN4) - a specialized photopigment being responsive especially to blue light wavelengths - has not been found in the human brain at protein level outside the retina. More specifically, OPN4 has only been found in about 2% of retinal ganglion cells (i.e. in intrinsically photosensitive retinal ganglion cells), and in a subtype of retinal cone-cells. Given that Allen Institute for Brain Science has described a wide distribution of OPN4 mRNA in two human brains, we aimed to investigate whether OPN4 is present in the human brain also at protein level. Western blotting and immunohistochemistry, as well as immunoelectron microscopy, were used to analyse the existence and distribution of OPN4 protein in 18 investigated areas of the human brain in samples obtained in forensic autopsies from 10 male subjects (54 ± 3.5 years). OPN4 protein expression was found in all subjects, and, furthermore, in 5 out of 10 subjects in all investigated brain areas localized in membranous compartments and cytoplasmic vesicles of neurons. To our opinion, the wide distribution of OPN4 in central areas of the human brain evokes a question whether ambient light has important straight targets in the human brain outside the retinohypothalamic tract (RHT). Further studies are, however, needed to investigate the putative physiological phototransductive actions of inborn OPN4 protein outside the RHT in the human brain.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Opsinas de Bastonetes/metabolismo , Cadáver , Humanos , Imuno-Histoquímica , Masculino , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Transporte Proteico , Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/genética , Distribuição Tecidual
9.
Front Hum Neurosci ; 10: 680, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119587

RESUMO

Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD group and in the Salience network in the bvFTD group after combining CV quality control with gmICA. Before CV quality control, the decreased connectivity finding was not detectable in gmICA in neither of the groups. Same finding recurred when exclusion was based on randomization. The subjects excluded due to artifacts noticed in the CV maps had significantly lower temporal signal-to-noise ratio than the included subjects. Data quality measure CV is an effective tool in detecting artifacts from resting state analysis. CV reflects temporal dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA, which has a blind spot in spatially correlating widespread artifacts. CV mapping in conjunction with gmICA yields results suiting previous findings both in AD and bvFTD.

10.
Magn Reson Imaging ; 23(4): 531-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15919598

RESUMO

The blood oxygen level-dependent (BOLD) magnetic resonance signal of functional brain cortices is dominated by very low frequency (VLF) fluctuations in anesthetized child patients. The temporal synchrony of the BOLD signal is also higher in anesthetized children compared with awake adults. The origin of the synchronous fluctuations can be related to maturation, pathological status or the anesthesia used in the imaging. Two of the three confounding variables (maturation and pathology) were controlled in this study. The effect of midazolam (4+/-0.8 mg) sedation on the BOLD signal was assessed in 12 healthy adults (aged 24+/-1.5 years) at 1.5 T. The VLF fluctuation power and temporal synchrony of the BOLD signal increased significantly after the sedation in the auditory and visual cortices. The fast Fourier transformation power spectral baseline fit parameters of the BOLD signal were also found to change significantly after sedation. It is concluded that the VLF fluctuation and temporal synchrony of the BOLD signal become increased after sedation in functional brain regions.


Assuntos
Córtex Auditivo/anatomia & histologia , Sedação Consciente/métodos , Imageamento por Ressonância Magnética/métodos , Midazolam/administração & dosagem , Córtex Visual/anatomia & histologia , Adulto , Artefatos , Feminino , Humanos , Hipnóticos e Sedativos , Processamento de Imagem Assistida por Computador , Masculino , Oxigênio/sangue
11.
Front Psychiatry ; 6: 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767449

RESUMO

Neurophysiological changes of schizophrenia are currently linked to disturbances in connectivity between functional brain networks. Functional magnetic resonance imaging studies on schizophrenia have focused on a few selected networks. Also previously, it has not been possible to discern whether the functional alterations in schizophrenia originate from spatial shifting or amplitude alterations of functional connectivity. In this study, we aim to discern the differences in schizophrenia patients with respect to spatial shifting vs. signal amplitude changes in functional connectivity in the whole-brain connectome. We used high model order-independent component analysis to study some 40 resting-state networks (RSN) covering the whole cortex. Group differences were analyzed with dual regression coupled with y-concat correction for multiple comparisons. We investigated the RSNs with and without variance normalization in order to discern spatial shifting from signal amplitude changes in 43 schizophrenia patients and matched controls from the Northern Finland 1966 Birth Cohort. Voxel-level correction for multiple comparisons revealed 18 RSNs with altered functional connectivity, 6 of which had both spatial and signal amplitude changes. After adding the multiple comparison, y-concat correction to the analysis for including the 40 RSNs as well, we found that four RSNs showed still changes. These robust changes actually seem encompass parcellations of the default mode network and central executive networks. These networks both have spatially shifted connectivity and abnormal signal amplitudes. Interestingly the networks seem to mix their functional representations in areas like left caudate nucleus and dorsolateral prefrontal cortex. These changes overlapped with areas that have been related to dopaminergic alterations in patients with schizophrenia compared to controls.

12.
Front Physiol ; 5: 184, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860513

RESUMO

PURPOSE: A recent study suggests that transcranial brain targeted light treatment via ear canals may have physiological effects on brain function studied by functional magnetic resonance imaging (fMRI) techniques in humans. We tested the hypothesis that bright light treatment could improve psychomotor speed in professional ice hockey players. METHODS: Psychomotor speed tests with audio and visual warning signals were administered to a Finnish National Ice Hockey League team before and after 24 days of transcranial bright light or sham treatment. The treatments were given during seasonal darkness in the Oulu region (latitude 65 degrees north) when the strain on the players was also very high (10 matches during 24 days). A daily 12-min dose of bright light or sham (n = 11 for both) treatment was given every morning between 8 and 12 am at home with a transcranial bright light device. Mean reaction time and motor time were analyzed separately for both psychomotor tests. Analysis of variance for repeated measures adjusted for age was performed. RESULTS: Time × group interaction for motor time with a visual warning signal was p = 0.024 after adjustment for age. In Bonferroni post-hoc analysis, motor time with a visual warning signal decreased in the bright light treatment group from 127 ± 43 to 94 ± 26 ms (p = 0.024) but did not change significantly in the sham group 121 ± 23 vs. 110 ± 32 ms (p = 0.308). Reaction time with a visual signal did not change in either group. Reaction or motor time with an audio warning signal did not change in either the treatment or sham group. CONCLUSION: Psychomotor speed, particularly motor time with a visual warning signal, improves after transcranial bright light treatment in professional ice-hockey players during the competition season in the dark time of the year.

13.
Front Hum Neurosci ; 7: 802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319422

RESUMO

In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA) which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered.

14.
Front Syst Neurosci ; 4: 24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20589093

RESUMO

In this study, we applied coherence to voxel-wise measurement of regional homogeneity of resting-state functional magnetic resonance imaging (RS-fMRI) signal. We compared the current method, regional homogeneity based on coherence (Cohe-ReHo), with previously proposed method, ReHo based on Kendall's coefficient of concordance (KCC-ReHo), in terms of correlation and paired t-test in a large sample of healthy participants. We found the two measurements differed mainly in some brain regions where physiological noise is dominant. We also compared the sensitivity of these methods in detecting difference between resting-state conditions [eyes open (EO) vs. eyes closed (EC)] and in detecting abnormal local synchronization between two groups [attention deficit hyperactivity disorder (ADHD) patients vs. normal controls]. Our results indicated that Cohe-ReHo is more sensitive than KCC-ReHo to the difference between two conditions (EO vs. EC) as well as that between ADHD and normal controls. These preliminary results suggest that Cohe-ReHo is superior to KCC-ReHo. A possible reason is that coherence is not susceptible to random noise induced by phase delay among the time courses to be measured. However, further investigation is still needed to elucidate the sensitivity and specificity of these methods.

15.
Artigo em Inglês | MEDLINE | ID: mdl-20953235

RESUMO

Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. High model order group probabilistic ICA components (70) were calculated and dual-regression analysis was used to compare 21 RSN's spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN's reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA