Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 47(3): 1234-47, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17381082

RESUMO

New crystal structures of human CYP2D6 and CYP3A4 have recently been reported, and in this study, we wanted to compare them with previously used homology models with respect to predictions of site of metabolism and ligand-enzyme interactions. The data set consisted of a family of synthetic opioid analgesics with the aim to cover both CYP2D6 and CYP3A4, as most of these compounds are metabolized by both isoforms. The program MetaSite was used for the site of metabolism predictions, and the results were validated by experimental assessment of the major metabolites formed with recombinant CYP450s. This was made on a selection of 14 compounds in the data set. The prediction rates for MetaSite were 79-100% except for the CYP3A4 homology model, which picked the correct site in half of the cases. Despite differences in orientation of some important amino acids in the active sites, the MetaSite-predicted sites were the same for the different structures, with the exception of the CYP3A4 homology model. Further exploration of interactions with ligands was done by docking substrates/inhibitors in the different structures with the docking program GLUE. To address the challenge in interpreting patterns of enzyme-ligand interactions for the large number of different docking poses, a new computational tool to handle the results from the dockings was developed, in which the output highlights the relative importance of amino acids in CYP450-substrate/inhibitor interactions. The method is based on calculations of the interaction energies for each pose with the surrounding amino acids. For the CYP3A4 structures, this method was compared with consensus principal component analysis (CPCA), a commonly used method for structural comparison to evaluate the usefulness of the new method. The results from the two methods were comparable with each other, and the highlighted amino acids resemble those that were identified to have a different orientation in the compared structures. The new method has clear advantages over CPCA in that it is far simpler to interpret and there is no need for protein alignment. The methodology enables structural comparison but also gives insights on important amino acid substrate/inhibitor interactions and can therefore be very useful when suggesting modifications of new chemical entities to improve their metabolic profiles.


Assuntos
Simulação por Computador , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Analgésicos Opioides , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Software , Relação Estrutura-Atividade
2.
Drug Metab Rev ; 39(1): 61-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17364881

RESUMO

In drug design, it is crucial to have reliable information on how a chemical entity behaves in the presence of metabolizing enzymes. This requires substantial experimental efforts. Consequently, being able to predict the likely site/s of metabolism in any compound, synthesized or virtual, would be highly beneficial and time efficient. In this work, six different methodologies for predictions of the site of metabolism (SOM) have been compared and validated using structurally diverse data sets of drug-like molecules with well-established metabolic pattern in CYP3A4, CYP2C9, or both. Three of the methods predict the SOM based on the ligand's chemical structure, two additional methods use structural information of the enzymes, and the sixth method combines structure and ligand similarity and reactivity. The SOM is correctly predicted in 50 to 90% of the cases, depending on method and enzyme, which is an encouraging rate. We also discuss the underlying mechanisms of cytochrome P450 metabolism in the light of the results from this comparison.


Assuntos
Biologia Computacional/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Algoritmos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Biologia Computacional/tendências , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA