Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164317

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Compostos Heterocíclicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Células Vero
2.
Retrovirology ; 15(1): 5, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329553

RESUMO

BACKGROUND: Combination antiretroviral therapy efficiently suppresses HIV replication in infected patients, transforming HIV/AIDS into a chronic disease. Viral resistance does develop however, especially under suboptimal treatment conditions such as poor adherence. As a consequence, continued exploration of novel targets is paramount to identify novel antivirals that do not suffer from cross-resistance with existing drugs. One new promising class of targets are HIV protein-cofactor interactions. Transportin-SR2 (TRN-SR2) is a ß-karyopherin that was recently identified as an HIV-1 cofactor. It has been implicated in nuclear import of the viral pre-integration complex and was confirmed as a direct binding partner of HIV-1 integrase (IN). Nevertheless, consensus on its mechanism of action is yet to be reached. RESULTS: Here we describe the development and use of an AlphaScreen-based high-throughput screening cascade for small molecule inhibitors of the HIV-1 IN-TRN-SR2 interaction. False positives and nonspecific protein-protein interaction inhibitors were eliminated through different counterscreens. We identified and confirmed 2 active compound series from an initial screen of 25,608 small molecules. These compounds significantly reduced nuclear import of fluorescently labeled HIV particles. CONCLUSIONS: Alphascreen-based high-throughput screening can allow the identification of compounds representing a novel class of HIV inhibitors. These results corroborate the role of the IN-TRN-SR2 interaction in nuclear import. These compounds represent the first in class small molecule inhibitors of HIV-1 nuclear import.


Assuntos
Antivirais/farmacologia , Núcleo Celular/metabolismo , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Efeito Citopatogênico Viral/efeitos dos fármacos , Descoberta de Drogas , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas
3.
Proc Natl Acad Sci U S A ; 112(11): E1363-72, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733887

RESUMO

Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation.


Assuntos
Neuropeptídeos/metabolismo , Quinolinas/farmacologia , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células HEK293 , Temperatura Alta , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Camundongos Endogâmicos C57BL , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/patologia , Dor/fisiopatologia , Pregnenolona/farmacologia , Quinolinas/química , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPM/agonistas , Transfecção
4.
Mol Cancer Ther ; 23(1): 3-13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748190

RESUMO

The Hippo pathway and its downstream effectors, the YAP and TAZ transcriptional coactivators, are deregulated in multiple different types of human cancer and are required for cancer cell phenotypes in vitro and in vivo, while largely dispensable for tissue homeostasis in adult mice. YAP/TAZ and their main partner transcription factors, the TEAD1-4 factors, are therefore promising anticancer targets. Because of frequent YAP/TAZ hyperactivation caused by mutations in the Hippo pathway components NF2 and LATS2, mesothelioma is one of the prime cancer types predicted to be responsive to YAP/TAZ-TEAD inhibitor treatment. Mesothelioma is a devastating disease for which currently no effective treatment options exist. Here, we describe a novel covalent YAP/TAZ-TEAD inhibitor, SWTX-143, that binds to the palmitoylation pocket of all four TEAD isoforms. SWTX-143 caused irreversible and specific inhibition of the transcriptional activity of YAP/TAZ-TEAD in Hippo-mutant tumor cell lines. More importantly, YAP/TAZ-TEAD inhibitor treatment caused strong mesothelioma regression in subcutaneous xenograft models with human cells and in an orthotopic mesothelioma mouse model. Finally, SWTX-143 also selectively impaired the growth of NF2-mutant kidney cancer cell lines, suggesting that the sensitivity of mesothelioma models to these YAP/TAZ-TEAD inhibitors can be extended to other tumor types with aberrations in Hippo signaling. In brief, we describe a novel and specific YAP/TAZ-TEAD inhibitor that has potential to treat multiple Hippo-mutant solid tumor types.


Assuntos
Mesotelioma Maligno , Mesotelioma , Adulto , Humanos , Animais , Camundongos , Via de Sinalização Hippo , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Viruses ; 15(12)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140533

RESUMO

Rabies virus (RABV) causes severe neurological symptoms in mammals. The disease is almost inevitably lethal as soon as clinical symptoms appear. The use of rabies immunoglobulins (RIG) and vaccination in post-exposure prophylaxis (PEP) can provide efficient protection, but many people do not receive this treatment due to its high cost and/or limited availability. Highly potent small molecule antivirals are urgently needed to treat patients once symptoms develop. In this paper, we report on the development of a high-throughput phenotypic antiviral screening assay based on the infection of BHK-21 cells with a fluorescent reporter virus and high content imaging readout. The assay was used to screen a repurposing library of 3681 drugs (all had been studied in phase 1 clinical trials). From this series, salinomycin was found to selectively inhibit viral replication by blocking infection at the entry stage. This shows that a high-throughput assay enables the screening of large compound libraries for the purposes of identifying inhibitors of RABV replication. These can then be optimized through medicinal chemistry efforts and further developed into urgently needed drugs for the treatment of symptomatic rabies.


Assuntos
Vírus da Raiva , Raiva , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios de Triagem em Larga Escala , Replicação Viral , Mamíferos
6.
Anal Biochem ; 413(2): 90-6, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21338570

RESUMO

A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ~27,000 compounds and proved to be highly reliable (average Z' factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Humanos , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC , Proteínas SecA
7.
Antiviral Res ; 196: 105208, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793841

RESUMO

To suppress serious influenza infections in persons showing insufficient protection from the vaccines, antiviral drugs are of vital importance. There is a need for novel agents with broad activity against influenza A (IAV) and B (IBV) viruses and with targets that differ from those of the current antivirals. We here report a new small molecule influenza virus inhibitor referred to as CPD A (chemical name: N-(pyridin-3-yl)thiophene-2-carboxamide). In an influenza virus minigenome assay, this non-nucleoside compound inhibited RNA synthesis of IAV and IBV with EC50 values of 2.3 µM and 2.6 µM, respectively. Robust in vitro activity was noted against a broad panel of IAV (H1N1 and H3N2) and IBV strains, with a median EC50 value of 0.20 µM, which is 185-fold below the 50% cytotoxic concentration. The action point in the viral replication cycle was located between 1 and 5 h p.i., showing a similar profile as ribavirin. Like this nucleoside analogue, CPD A was shown to cause strong depletion of the cellular GTP pool and, accordingly, its antiviral activity was antagonized when this pool was restored with exogenous guanosine. This aligns with the observed inhibition in a cell-based IMP dehydrogenase (IMPDH) assay, which seems to require metabolic activation of CPD A since no direct inhibition was seen in an enzymatic IMPDH assay. The combination of CPD A with ribavirin, another IMPDH inhibitor, proved strongly synergistic. To conclude, we established CPD A as a new inhibitor of influenza A and B virus replication and RNA synthesis, and support the potential of IMPDH inhibitors for influenza therapy with acceptable safety profile.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Ribavirina/farmacologia , Linhagem Celular , Sinergismo Farmacológico , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A/classificação , Influenza Humana/tratamento farmacológico
8.
ACS Infect Dis ; 7(8): 2250-2263, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34125508

RESUMO

The development of new antibiotics is particularly problematic in Gram-negative bacteria due to the presence of the outer membrane (OM), which serves as a permeability barrier. Recently, the ß-barrel assembly machine (BAM), located in the OM and responsible for ß-barrel type OM protein (OMP) assembly, has been validated as a novel target for antibiotics. Here, we identified potential BAM complex inhibitors using a screening approach that reports on cell envelope σE and Rcs stress in Escherichia coli. Screening a library consisting of 316 953 compounds yielded five compounds that induced σE and Rcs stress responses, while not inducing the intracellular heat-shock response. Two of the five compounds (compounds 2 and 14) showed the characteristics of known BAM complex inhibitors: synergy with OMP biogenesis mutants, decrease in the abundance of various OMPs, and loss of OM integrity. Importantly, compound 2 also inhibited BAM-dependent OMP folding in an in vitro refolding assay using purified BAM complex reconstituted in proteoliposomes.


Assuntos
Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Multimerização Proteica
9.
Microorganisms ; 9(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805695

RESUMO

The increasing problem of bacterial resistance to antibiotics underscores the urgent need for new antibacterials. Protein export pathways are attractive potential targets. The Sec pathway is essential for bacterial viability and includes components that are absent from eukaryotes. Here, we used a new high-throughput in vivo screen based on the secretion and activity of alkaline phosphatase (PhoA), a Sec-dependent secreted enzyme that becomes active in the periplasm. The assay was optimized for a luminescence-based substrate and was used to screen a ~240K small molecule compound library. After hit confirmation and analoging, 14 HTS secretion inhibitors (HSI), belonging to eight structural classes, were identified with IC50 < 60 µM. The inhibitors were evaluated as antibacterials against 19 Gram-negative and Gram-positive bacterial species (including those from the WHO's top pathogens list). Seven of them-HSI#6, 9; HSI#1, 5, 10; and HSI#12, 14-representing three structural families, were bacteriocidal. HSI#6 was the most potent hit against 13 species of both Gram-negative and Gram-positive bacteria with IC50 of 0.4 to 8.7 µM. HSI#1, 5, 9 and 10 inhibited the viability of Gram-positive bacteria with IC50 ~6.9-77.8 µM. HSI#9, 12, and 14 inhibited the viability of E. coli strains with IC50 < 65 µM. Moreover, HSI#1, 5 and 10 inhibited the viability of an E. coli strain missing TolC to improve permeability with IC50 4 to 14 µM, indicating their inability to penetrate the outer membrane. The antimicrobial activity was not related to the inhibition of the SecA component of the translocase in vitro, and hence, HSI molecules may target new unknown components that directly or indirectly affect protein secretion. The results provided proof of the principle that the new broad HTS approach can yield attractive nanomolar inhibitors that have potential as new starting compounds for optimization to derive potential antibiotics.

10.
Vet Parasitol ; 265: 15-18, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30638515

RESUMO

Parasitic nematodes continue to cause significant economic losses in livestock globally. Given the limited number of anthelmintic drugs on the market and the currently increasing drug resistance, there is an urgent need for novel anthelmintics. Most motility assays of anthelmintic activity for parasitic nematodes are laborious and low throughput, and therefore not suitable for screening large compound libraries. Cooperia oncophora accounts for a large proportion of reports on the drug-resistance development of parasites globally. Therefore, using a WMicroTracker instrument, we established a practical, automated and low-cost whole-organism motility assay against exsheathed L3 stages (xL3s) of the ruminant parasite Cooperia oncophora, and screened a repurposing library comprising 2745 molecules. Fourteen known anthelmintics contained in this library were picked up in this blind screen, as well as four novel hits: thonzonium bromide, NH125, physostigmine sulfate, and EVP4593. The four hits were also active against xL3s of Ostertagia ostertagi, Haemonchus contortus and Teladorsagia circumcincta using the same assay. Cytotoxicity testing showed that thonzonium bromide and NH125 (1-Benzyl-3-cetyl-2-methylimidazolium iodide) have significant cytotoxicity. EVP4593 (N(4)-(2-(4-phenoxyphenyl)ethyl)-4,6-quinazolinediamine) demonstrated a potent and broad anthelmintic activity, and a high selectivity index. Moreover, given its novel and unexplored chemical scaffold for anthelmintic activity, EVP4593 is an interesting anthelmintic hit for further optimization.


Assuntos
Anti-Helmínticos/farmacologia , Reposicionamento de Medicamentos , Nematoides/efeitos dos fármacos , Ruminantes/parasitologia , Bibliotecas de Moléculas Pequenas , Animais , Anti-Helmínticos/química , Estrutura Molecular
11.
Nat Biotechnol ; 20(11): 1154-7, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12355097

RESUMO

With the publication of the sequence of the human genome, we are challenged to identify the functions of an estimated 70,000 human genes and the much larger number of proteins encoded by these genes. Of particular interest is the identification of gene products that play a role in human disease pathways, as these proteins include potential new targets that may lead to improved therapeutic strategies. This requires the direct measurement of gene function on a genomic scale in cell-based, functional assays. We have constructed and validated an individually arrayed, replication-defective adenoviral library harboring human cDNAs, termed PhenoSelect library. The adenoviral vector guarantees efficient transduction of diverse cell types, including primary cells. The arrayed format allows screening of this library in a variety of cellular assays in search for gene(s) that, by overexpression, induce a particular disease-related phenotype. The great majority of phenotypic assays, including morphological assays, can be screened with arrayed libraries. In contrast, pooled-library approaches often rely on phenotype-based isolation or selection of single cells by employing a flow cytometer or screening for cell survival. An arrayed placental PhenoSelect library was screened in cellular assays aimed at identifying regulators of osteogenesis, metastasis, and angiogenesis. This resulted in the identification of known regulators, as well as novel sequences that encode proteins hitherto not known to play a role in these pathways. These results establish the value of the PhenoSelect platform, in combination with cellular screens, for gene function discovery.


Assuntos
Adenoviridae/genética , Regulação Viral da Expressão Gênica , Biblioteca Gênica , Genoma Humano , Animais , Linhagem Celular , Cães , Epitélio/fisiologia , Epitélio/virologia , Estudos de Viabilidade , Feminino , Células HeLa/fisiologia , Células HeLa/virologia , Humanos , Rim/fisiologia , Rim/virologia , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteoblastos/fisiologia , Osteoblastos/virologia , Placenta/fisiologia , Placenta/virologia , Gravidez , Análise de Sequência de DNA/métodos
12.
Biochem Pharmacol ; 135: 69-78, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359706

RESUMO

Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP+ step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order.


Assuntos
Antituberculosos/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/metabolismo , Antituberculosos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
13.
Eur J Med Chem ; 63: 713-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23567961

RESUMO

FLT3 and PDGFR tyrosine kinases are important targets for therapy of different types of leukemia. Several FLT3/PDGFR inhibitors are currently under clinical investigation for combination with standard therapy for treatment of acute myeloid leukemia (AML), however these agents only induce partial remission and development of resistance has been reported. In this work we describe the identification of potent and novel dual FLT3/PDGFR inhibitors that resulted from our efforts to screen a library of 25,607 small molecules against the FLT3 dependent cell line MOLM-13 and the PDGFR dependent cell line EOL-1. This effort led to the identification of five compounds that were confirmed to be active on additional FLT3 dependent cell lines (cellular EC50 values between 35 and 700 nM), while having no significant effect on 24 other tyrosine kinases.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Síndrome Hipereosinofílica/metabolismo , Síndrome Hipereosinofílica/patologia , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
J Med Chem ; 55(19): 8236-47, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22957947

RESUMO

Structural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing. (-)-18a has very good pharmacokinetic properties, including bioavailability in rat (F > 50%), and is currently under evaluation in phase I clinical trials.


Assuntos
Androgênios/síntese química , Hidantoínas/síntese química , Anabolizantes/síntese química , Anabolizantes/química , Anabolizantes/farmacologia , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Animais , Disponibilidade Biológica , Agonismo Parcial de Drogas , Células HeLa , Humanos , Hidantoínas/química , Hidantoínas/farmacologia , Masculino , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Próstata/anatomia & histologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA