Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biometals ; 28(2): 293-306, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25636453

RESUMO

Iron is essential for numerous cellular processes. For diagnostic purposes iron-related parameters in patients are assessed by clinical chemical blood analysis including the analysis of ferritin, transferrin and iron levels. Here, we retrospectively evaluated the use of these parameters in the phenotype-driven Munich N-ethyl-N-nitrosourea mouse mutagenesis project for the generation of novel animal models for human diseases. The clinical chemical blood analysis was carried out on more than 10,700 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma levels of iron-related plasma parameters. We identified animals consistently exhibiting altered plasma ferritin or transferrin values. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of three mutant lines with increased plasma ferritin levels. For two of these lines the causative mutations were identified in the Fth1gene and the Ireb2 gene, respectively. Thus, novel mouse models for the functional analysis of iron homeostasis were established by a phenotype-driven screen for mutant mice.


Assuntos
Etilnitrosoureia/farmacologia , Ferritinas/sangue , Mutagênicos/farmacologia , Animais , Sequência de Bases , Análise Mutacional de DNA , Feminino , Expressão Gênica , Estudos de Associação Genética , Ligação Genética , Testes Genéticos , Ferro/sangue , Masculino , Camundongos Endogâmicos C3H , Mutagênese , Fenótipo , Transferrina/metabolismo
2.
Mamm Genome ; 23(7-8): 416-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22527485

RESUMO

Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.


Assuntos
Doenças Ósseas Metabólicas/genética , Modelos Animais de Doenças , Camundongos/genética , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/enzimologia , Cálcio/sangue , Cromossomos de Mamíferos , Análise Mutacional de DNA , Etilnitrosoureia/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutagênese , Mutagênicos/farmacologia , Mutação , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fenótipo , Fosfatos/sangue , Polimorfismo de Nucleotídeo Único , Receptores de Detecção de Cálcio/genética , Estatísticas não Paramétricas , Cromossomo X
3.
Arthritis Rheum ; 63(5): 1301-11, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21305534

RESUMO

OBJECTIVE: It is difficult to identify a single causative factor for inflammatory arthritis because of the multifactorial nature of the disease. This study was undertaken to dissect the molecular complexity of systemic inflammatory disease, utilizing a combined approach of mutagenesis and systematic phenotype screening in a murine model. METHODS: In a large-scale N-ethyl-N-nitrosourea mutagenesis project, the Ali14 mutant mouse strain was established because of dominant inheritance of spontaneous swelling and inflammation of the hind paws. Genetic mapping and subsequent candidate gene sequencing were conducted to find the causative gene, and systematic phenotyping of Ali14/+ mice was performed in the German Mouse Clinic. RESULTS: A novel missense mutation in the phospholipase Cγ2 gene (Plcg2) was identified in Ali14/+ mice. Because of the hyperreactive external entry of calcium observed in cultured B cells and other in vitro experiments, the Ali14 mutation is thought to be a novel gain-of-function allele of Plcg2. Findings from systematic screening of Ali14/+ mice demonstrated various phenotypic changes: an abnormally high T cell:B cell ratio, up-regulation of Ig, alterations in body composition, and a reduction in cholesterol and triglyceride levels in peripheral blood. In addition, spermatozoa from Ali14/+ mice failed to fertilize eggs in vitro, despite the normal fertility of the Ali14/+ male mice in vivo. CONCLUSION: These results suggest that the Plcg2-mediated pathways play a crucial role in various metabolic and sperm functions, in addition to initiating and maintaining the immune system. These findings may indicate the importance of the Ali14/+ mouse strain as a model for systemic inflammatory diseases and inflammation-related metabolic changes in humans.


Assuntos
Artrite Experimental/genética , Composição Corporal/genética , Infertilidade Masculina/genética , Fosfolipase C gama/genética , Animais , Etilnitrosoureia/farmacologia , Citometria de Fluxo , Masculino , Camundongos , Camundongos Mutantes , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Motilidade dos Espermatozoides/genética
4.
Eur J Oral Sci ; 120(4): 269-77, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22813216

RESUMO

We analyzed two mutant mouse lines, ATE1 and ATE2, that carry point mutations in the enamelin gene which result in premature stop codons in exon 8 and exon 7, respectively. Both mutant lines show amelogenesis imperfecta. To establish the effect of mutations within the enamelin gene on different organs, we performed a systematic, standardized phenotypic analysis of both mutant lines in the German Mouse Clinic. In addition to the initially characterized tooth phenotype that is present in both mutant lines, we detected effects of enamelin mutations on bone and energy metabolism, as well as on clinical chemical and hematological parameters. These data raise the hypothesis that enamelin defects have pleiotropic effects on organs other than the teeth.


Assuntos
Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Genes Dominantes/fisiologia , Pleiotropia Genética/fisiologia , Amelogênese Imperfeita/sangue , Amelogênese Imperfeita/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Fenótipo , Mutação Puntual
5.
Sci Rep ; 12(1): 19793, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396684

RESUMO

Gastro-intestinal stromal tumors and acute myeloid leukemia induced by activating stem cell factor receptor tyrosine kinase (KIT) mutations are highly malignant. Less clear is the role of KIT mutations in the context of breast cancer. Treatment success of KIT-induced cancers is still unsatisfactory because of primary or secondary resistance to therapy. Mouse models offer essential platforms for studies on molecular disease mechanisms in basic cancer research. In the course of the Munich N-ethyl-N-nitrosourea (ENU) mutagenesis program a mouse line with inherited polycythemia was established. It carries a base-pair exchange in the Kit gene leading to an amino acid exchange at position 824 in the activation loop of KIT. This KIT variant corresponds to the N822K mutation found in human cancers, which is associated with imatinib-resistance. C3H KitN824K/WT mice develop hyperplasia of interstitial cells of Cajal and retention of ingesta in the cecum. In contrast to previous Kit-mutant models, we observe a benign course of gastrointestinal pathology associated with prolonged survival. Female mutants develop mammary carcinomas at late onset and subsequent lung metastasis. The disease model complements existing oncology research platforms. It allows for addressing the role of KIT mutations in breast cancer and identifying genetic and environmental modifiers of disease progression.


Assuntos
Neoplasias da Mama , Tumores do Estroma Gastrointestinal , Camundongos , Feminino , Humanos , Animais , Penetrância , Camundongos Endogâmicos C3H , Proteínas Proto-Oncogênicas c-kit/genética , Tumores do Estroma Gastrointestinal/genética , Modelos Animais de Doenças , Neoplasias da Mama/genética
6.
Mamm Genome ; 22(9-10): 495-505, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21553221

RESUMO

Research on hematological disorders relies on suitable animal models. We retrospectively evaluated the use of the hematological parameters hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC), white blood cell count (WBC), and platelet count (PLT) in the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project as parameters for the generation of novel animal models for human diseases. The analysis was carried out on more than 16,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the levels of the chosen parameters. Identification of animals exhibiting altered values and transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for the parameters MCV, RBC, and PLT. Analysis of the causative mutation was started in selected lines, thereby revealing a novel mutation in the transferrin receptor gene (Tfrc) in one line. Thus, novel phenotype-driven mouse models were established to analyze the genetic components of hematological disorders.


Assuntos
Modelos Animais de Doenças , Doenças Hematológicas/genética , Camundongos/genética , Mutagênese , Mutação , Animais , Sequência de Bases , Etilnitrosoureia , Feminino , Ligação Genética , Genótipo , Testes Hematológicos , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutagênicos , Fenótipo , Receptores da Transferrina/genética , Valores de Referência
7.
Am J Physiol Renal Physiol ; 298(6): F1405-15, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20219826

RESUMO

The bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter NKCC2, located in the thick ascending limb of Henle's loop, plays a critical role in the kidney's ability to concentrate urine. In humans, loss-of-function mutations of the solute carrier family 12 member 1 gene (SLC12A1), coding for NKCC2, cause type I Bartter syndrome, which is characterized by prenatal onset of a severe polyuria, salt-wasting tubulopathy, and hyperreninemia. In this study, we describe a novel chemically induced, recessive mutant mouse line termed Slc12a1(I299F) exhibiting late-onset manifestation of type I Bartter syndrome. Homozygous mutant mice are viable and exhibit severe polyuria, metabolic alkalosis, marked increase in plasma urea but close to normal creatininemia, hypermagnesemia, hyperprostaglandinuria, hypotension,, and osteopenia. Fractional excretion of urea is markedly decreased. In addition, calcium and magnesium excretions are more than doubled compared with wild-type mice, while uric acid excretion is twofold lower. In contrast to hyperreninemia present in human disease, plasma renin concentration in homozygotes is not increased. The polyuria observed in homozygotes may be due to the combination of two additive factors, a decrease in activity of mutant NKCC2 and an increase in medullary blood flow, due to prostaglandin-induced vasodilation, that impairs countercurrent exchange of urea in the medulla. In conclusion, this novel viable mouse line with a missense Slc12a1 mutation exhibits most of the features of type I Bartter syndrome and may represent a new model for the study of this human disease.


Assuntos
Síndrome de Bartter/genética , Capacidade de Concentração Renal/genética , Rim/fisiopatologia , Mutação de Sentido Incorreto , Poliúria/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Ureia/sangue , Aldeído Redutase/metabolismo , Sequência de Aminoácidos , Animais , Síndrome de Bartter/metabolismo , Síndrome de Bartter/patologia , Síndrome de Bartter/fisiopatologia , Biomarcadores/sangue , Pressão Sanguínea/genética , Peso Corporal , Densidade Óssea , Cálcio/sangue , Creatinina/sangue , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Genótipo , Homozigoto , Rim/metabolismo , Rim/patologia , Magnésio/sangue , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Dados de Sequência Molecular , Mucoproteínas/metabolismo , Fenótipo , Poliúria/metabolismo , Poliúria/patologia , Poliúria/fisiopatologia , Radiografia , Renina/metabolismo , Índice de Gravidade de Doença , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Ácido Úrico/sangue , Uromodulina
8.
Invest Ophthalmol Vis Sci ; 61(2): 44, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32106289

RESUMO

Purpose: The clinical phenotype of retinal gliosis occurs in different forms; here, we characterize one novel genetic feature, (i.e., signaling via BMP-receptor 1b). Methods: Mouse mutants were generated within a recessive ENU mutagenesis screen; the underlying mutation was identified by linkage analysis and Sanger sequencing. The eye phenotype was characterized by fundoscopy, optical coherence tomography, optokinetic drum, electroretinography, and visual evoked potentials, by histology, immunohistology, and electron-microscopy. Results: The mutation affects intron 10 of the Bmpr1b gene, which is causative for skipping of exon 10. The expression levels of pSMAD1/5/8 were reduced in the mutant retina. The loss of BMPR1B-mediated signaling leads to optic nerve coloboma, gliosis in the optic nerve head and ventral retina, defective optic nerve axons, and irregular retinal vessels. The ventral retinal gliosis is proliferative and hypertrophic, which is concomitant with neuronal delamination and the reduction of retinal ganglion cells (RGCs); it is dominated by activated astrocytes overexpressing PAX2 and SOX2 but not PAX6, indicating that they may retain properties of gliogenic precursor cells. The expression pattern of PAX2 in the optic nerve head and ventral retina is altered during embryonic development. These events finally result in reduced electrical transmission of the retina and optic nerve and significantly reduced visual acuity. Conclusions: Our study demonstrates that BMPR1B is necessary for the development of the optic nerve and ventral retina. This study could also indicate a new mechanism in the formation of retinal gliosis; it opens new routes for its treatment eventually preventing scar formation in the retina.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Coloboma/genética , Gliose/genética , Mutação , Disco Óptico/anormalidades , Doenças Retinianas/genética , Animais , Camundongos , Disco Óptico/patologia
9.
Am J Physiol Renal Physiol ; 297(5): F1391-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19692485

RESUMO

Uromodulin-associated kidney disease is a heritable renal disease in humans caused by mutations in the uromodulin (UMOD) gene. The pathogenesis of the disease is mostly unknown. In this study, we describe a novel chemically induced mutant mouse line termed Umod(A227T) exhibiting impaired renal function. The A227T amino acid exchange may impair uromodulin trafficking, leading to dysfunction of thick ascending limb cells of Henle's loop of the kidney. As a consequence, homozygous mutant mice display azotemia, impaired urine concentration ability, reduced fractional excretion of uric acid, and a selective defect in concentrating urea. Osteopenia in mutant mice is presumably a result of chronic hypercalciuria. In addition, body composition, lipid, and energy metabolism are indirectly affected in heterozygous and homozygous mutant Umod(A227T) mice, manifesting in reduced body weight, fat mass, and metabolic rate as well as reduced blood cholesterol, triglycerides, and nonesterified fatty acids. In conclusion, Umod(A227T) might act as a gain-of-toxic-function mutation. Therefore, the Umod(A227T) mouse line provides novel insights into consequences of disturbed uromodulin excretion regarding renal dysfunction as well as bone, energy, and lipid metabolism.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/genética , Nefropatias/genética , Nefropatias/metabolismo , Mucoproteínas/genética , Mutação de Sentido Incorreto/genética , Ureia/metabolismo , Absorciometria de Fóton , Animais , Pressão Sanguínea/fisiologia , Western Blotting , Peso Corporal/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Nefropatias/urina , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C3H , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Especificidade da Espécie , Ureia/urina , Uromodulina
10.
Mamm Genome ; 20(3): 152-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19238339

RESUMO

Many of inflammatory diseases, including inflammatory arthritis, are multifactorial bases. The Ali18 semidominant mutation induced by N-ethyl-N-nitrosourea in the C3HeB/FeJ (C3H) genome causes spontaneous inflammation of peripheral limbs and elevated immunoglobulin E (IgE) levels in mice. Although the Ali18 locus was mapped to a single locus on chromosome 4, the arthritic phenotype of Ali18/+ mice was completely suppressed in F1 hybrid genetic backgrounds. To determine the chromosomal locations of the modifier loci affecting the severity of arthritis, an autosomal genome scan of 22 affected Ali18/+ F2 mice was conducted using C57BL/6J as a partner strain. Interestingly, regions on chromosomes 1 and 3 in C3H showed significant genetic interactions. Moreover, 174 N2 (backcross to Ali18/Ali18) and 267 F2 animals were used for measurement of arthritis scores and plasma IgE levels, and also for genotyping with 153 genome-wide single nucleotide polymorphism (SNP) markers. In N2 populations, two significant trait loci for arthritis scores on chromosomes 1 and 15 were detected. Although no significant scores were detected in F2 mice besides chromosome 4, a suggestive score was detected on chromosome 3. In addition, a two-dimensional genome scan using F2 identified five suggestive scores of chromosomal combinations, chromosomes 1 x 10, 2 x 6, 3 x 4, 4 x 9, and 6 x 15. No significant trait loci affecting IgE levels were detected in both N2 and F2 populations. Identification of the Ali18 modifier genes by further detailed analyses such as congenic strains and expression profiling may dissect molecular complexity in inflammatory diseases.


Assuntos
Artrite/genética , Mutação , Animais , Artrite/imunologia , Artrite Experimental/genética , Artrite Experimental/imunologia , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Estudo de Associação Genômica Ampla , Humanos , Imunoglobulina E/sangue , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único
11.
Exp Physiol ; 94(4): 412-21, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19151073

RESUMO

Measurement of plasma enzyme activities is part of routine medical examination protocols and provides valuable parameters for the diagnosis of various organ diseases. In the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project, clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma enzyme activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alpha-amylase and creatine kinase. We identified a large number of animals that consistently exhibited altered plasma enzyme activities. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for each parameter. Breeding experiments in selected lines detected the linkage of the causative mutations to defined chromosomal regions. Subsequently, identification of the mutated genes was successfully carried out in chosen lines, resulting in a novel alkaline phosphatase liver/bone/kidney (Alpl) alteration in one line and the strong indication for a dystrophin (Dmd) alteration in another line. The mouse mutants with abnormal plasma enzyme activities recovered in the Munich ENU project are novel tools for the systematic dissection of the pathogenesis of organ diseases.


Assuntos
Enzimas/sangue , Etilnitrosoureia/farmacologia , Mutagênese , Mutagênicos/farmacologia , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Fosfatase Alcalina/genética , Animais , Aspartato Aminotransferases/sangue , Creatina Quinase/sangue , Distrofina/genética , Enzimas/genética , Feminino , Predisposição Genética para Doença , Hereditariedade , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Fenótipo , alfa-Amilases/sangue
12.
Genetics ; 175(3): 1451-63, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17179084

RESUMO

The Notch signaling pathway is an evolutionarily conserved transduction pathway involved in embryonic patterning and regulation of cell fates during development. Recent studies have demonstrated that this pathway is integral to a complex system of interactions, which are also involved in distinct human diseases. Delta1 is one of the known ligands of the Notch receptors. Mice homozygous for a loss-of-function allele of the Delta1 gene Dll1(lacZ/lacZ) die during embryonic development. Here, we present the results of two phenotype-driven modifier screens. Heterozygous Dll1(lacZ) knockout animals were crossed with ENU-mutagenized mice and screened for dysmorphological, clinical chemical, and immunological variants that are dependent on the Delta1 loss-of-function allele. First, we show that mutagenized heterozygous Dll1(lacZ) offspring have reduced body weight and altered specific clinical chemical parameters, including changes in metabolites and electrolytes relevant for kidney function. In our mutagenesis screen we have successfully generated 35 new mutant lines. Of major interest are 7 mutant lines that exhibit a Dll1(lacZ/+)-dependent phenotype. These mutant mouse lines provide excellent in vivo tools for studying the role of Notch signaling in kidney and liver function, cholesterol and iron metabolism, cell-fate decisions, and during maturation of T cells in the immune system.


Assuntos
Alelos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos/genética , Fenótipo , Transdução de Sinais/genética , Animais , Análise Química do Sangue , Constituição Corporal/genética , Peso Corporal/genética , Pesos e Medidas Corporais , Cruzamentos Genéticos , Primers do DNA , Testes Genéticos , Genótipo , Camundongos Knockout , Mutagênese
13.
Sci Rep ; 8(1): 5975, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654304

RESUMO

By N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated the mutant mouse line TUB6 that is characterised by severe combined immunodeficiency (SCID) and systemic sterile autoinflammation in homozygotes, and a selective T cell defect in heterozygotes. The causative missense point mutation results in the single amino acid exchange G170W in multicatalytic endopeptidase complex subunit-1 (MECL-1), the ß2i-subunit of the immuno- and thymoproteasome. Yeast mutagenesis and crystallographic data suggest that the severe TUB6-phenotype compared to the MECL-1 knockout mouse is caused by structural changes in the C-terminal appendage of ß2i that prevent the biogenesis of immuno- and thymoproteasomes. Proteasomes are essential for cell survival, and defective proteasome assembly causes selective death of cells expressing the mutant MECL-1, leading to the severe immunological phenotype. In contrast to the immunosubunits ß1i (LMP2) and ß5i (LMP7), mutations in the gene encoding MECL-1 have not yet been assigned to human disorders. The TUB6 mutant mouse line exemplifies the involvement of MECL-1 in immunopathogenesis and provides the first mouse model for primary immuno- and thymoproteasome-associated immunodeficiency that may also be relevant in humans.


Assuntos
Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Sobrevivência Celular/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Subunidades Proteicas/imunologia
14.
Nucleic Acids Res ; 33(Web Server issue): W496-500, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15980520

RESUMO

Genome-wide mapping in the identification of novel candidate genes has always been the standard method in genetics and genomics to correlate a clinically interesting phenotypic trait with a genotype. However, the performance of a mapping experiment using classical microsatellite approaches can be very time consuming. The high-throughput analysis of single-nucleotide polymorphisms (SNPs) has the potential of being the successor of microsatellite analysis routinely used for these mapping approaches, where one of the major obstacles is the design of the appropriate SNP marker set itself. Here we report on ARTS, an advanced retrieval tool for SNPs, which allows researchers to comb freely the public mouse dbSNP database for multiple reference and test strains. Several filters can be applied in order to improve the sensitivity and the specificity of the search results. By employing the panel generator function of this program, it is possible to abbreviate the extraction of reliable sequence data for a large marker panel including several different mouse strains from days to minutes. The concept of ARTS is easily adaptable to other species for which SNP databases are available, making it a versatile tool for the use of SNPs as markers for genotyping. The web interface is accessible at http://andromeda.gsf.de/arts.


Assuntos
Mapeamento Cromossômico/métodos , Genômica/métodos , Camundongos Mutantes , Polimorfismo de Nucleotídeo Único , Software , Animais , Marcadores Genéticos , Genótipo , Internet , Camundongos , Camundongos Endogâmicos C3H , Interface Usuário-Computador
15.
PLoS One ; 10(5): e0125304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951169

RESUMO

Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb) contains 3 candidate genes (Apoe, Six5, Opa3); none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma pigmentosum in heterozygotes under particular environmental conditions.


Assuntos
Catarata/genética , Olho/crescimento & desenvolvimento , Mutação , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Animais , Catarata/patologia , Olho/metabolismo , Olho/patologia , Feminino , Genes Recessivos , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Masculino , Camundongos , Análise de Sequência de DNA
16.
Curr Pharm Biotechnol ; 10(2): 198-213, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19199953

RESUMO

Aim of this review is to demonstrate the relevance of animal models created by ENU mutagenesis for the pharmaceutical community to understand diseases and the modulation of disease status by pharmaceutical compounds. We give an overview of what ENU mutagenesis in mice implies and introduce the main research centers running ENU mutagenesis projects. The different strategies of ENU mutagenesis screens are explained as well as the latest advances in mapping and mutation detection strategies, which until recently have been the main limiting step in forward genetics/phenotype-driven approaches. ENU mutagenesis in mice has shown its power by providing animal models for human monogenic diseases. Moreover, the development of modifier and sensitized screens extended this resource to models for multigenic diseases and thereby opened the perspective to understand the modulation of disease states. Finally, we provide information about the accessibility and availability of these models for academic research.


Assuntos
Etilnitrosoureia/toxicidade , Modelos Animais , Mutagênese , Mutagênicos/toxicidade , Animais , Genoma , Camundongos , Mutagênese Sítio-Dirigida , Mutação
17.
Invest Ophthalmol Vis Sci ; 50(12): 5653-61, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19578028

RESUMO

PURPOSE: The purpose of this study was the morphologic and genetic characterization of the novel eye size mutant Aca23 in the mouse. METHODS: The eyes of the mutants were characterized in vivo by optical low-coherence interferometry, Scheimpflug imaging, and funduscopy. Visual acuity was examined using a virtual optomotor system. Morphology was studied by histology, in situ hybridization, and immunohistochemistry. Linkage analysis was performed using genomewide scans with single nucleotide polymorphisms and microsatellite markers. RESULTS: Aca23 is a new semidominant eye size mutant that was discovered in an ENU mutagenesis screen. The phenotype includes increased anterior chamber depths, extended axial lengths, and reduced thickness of corneal layers. Aca23 was mapped to chromosome 4. A G-->A point mutation was identified at cDNA position 770 of Col8a2 encoding collagen VIII alpha2. The transition results in a G257D amino acid exchange affecting a highly conserved glycine residue in the collagenous domain. Proliferation of corneal endothelium, eye fundus, and visual acuity are not affected. CONCLUSIONS: The mouse mutant Aca23 described here offers the first point mutation of the Col8a2 gene in the mouse. The results of this study suggest that a functional collagen VIII alpha2 is essential for the correct assembly of the Descemet's membrane and for corneal stability. Aca23 might be used as a novel model for keratoglobus.


Assuntos
Câmara Anterior/anormalidades , Colágeno Tipo VIII/genética , Córnea/anormalidades , Modelos Animais de Doenças , Anormalidades do Olho/genética , Mutação Puntual/genética , Alquilantes/toxicidade , Animais , Câmara Anterior/patologia , Córnea/patologia , Etilnitrosoureia/toxicidade , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/fisiopatologia , Feminino , Ligação Genética , Técnicas Imunoenzimáticas , Hibridização In Situ , Interferometria , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes , Repetições de Microssatélites , Mutagênese Sítio-Dirigida , Oftalmoscopia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Acuidade Visual/fisiologia
18.
Biochem Biophys Res Commun ; 359(4): 947-51, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17577581

RESUMO

Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Animais Recém-Nascidos/genética , Marcação de Genes/métodos , Pulmão/anormalidades , Pulmão/patologia , Insuficiência Respiratória/congênito , Insuficiência Respiratória/patologia , Animais , Inativação Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Am J Physiol Renal Physiol ; 292(5): F1560-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17264314

RESUMO

Kidney diseases lead to the failure of urinary excretion of metabolism products. In the Munich ethylnitrosourea (ENU) mouse mutagenesis project, which is done on a C3H inbred genetic background, blood samples of more than 15,000 G1 offspring and 500 G3 pedigrees were screened for alterations in clinical-chemical parameters. We identified 44 animals consistently exhibiting increased plasma urea concentrations. Transmission analysis of the altered phenotype of 23 mice to subsequent generations led to the establishment of five mutant lines. Both sexes were affected in these lines. Urinary urea levels were decreased in the mutants. In addition, most mutants showed increased plasma and decreased urinary creatinine levels. Pathological investigation of kidneys from the five mutant lines revealed a broad spectrum of alterations, ranging from no macroscopic and light microscopic kidney alterations to decreased kidney weight-to-body weight ratio, dilation of the renal pelvis, and severe glomerular lesions. Thus screening for elevated plasma urea levels in a large-scale ENU mouse mutagenesis project resulted in the successful establishment of mouse strains which are valuable tools for molecular studies of mechanisms involved in urea excretion or which represent interesting models for kidney diseases.


Assuntos
Etilnitrosoureia , Nefropatias/induzido quimicamente , Nefropatias/genética , Mutagênese , Ureia/sangue , Animais , Peso Corporal , Mapeamento Cromossômico , Creatinina/sangue , Creatinina/urina , Feminino , Rim/patologia , Nefropatias/sangue , Nefropatias/patologia , Glomérulos Renais/patologia , Pelve Renal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Mutantes , Tamanho do Órgão , Fenótipo
20.
Diabetes ; 56(5): 1268-76, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17303807

RESUMO

The novel diabetic mouse model Munich Ins2(C95S) was discovered within the Munich N-ethyl-N-nitrosourea mouse mutagenesis screen. These mice exhibit a T-->A transversion in the insulin 2 (Ins2) gene at nucleotide position 1903 in exon 3, which leads to the amino acid exchange C95S and loss of the A6-A11 intrachain disulfide bond. From 1 month of age onwards, blood glucose levels of heterozygous Munich Ins2(C95S) mutant mice were significantly increased compared with controls. The fasted and postprandial serum insulin levels of the heterozygous mutants were indistinguishable from those of wild-type littermates. However, serum insulin levels after glucose challenge, pancreatic insulin content, and homeostasis model assessment (HOMA) beta-cell indices of heterozygous mutants were significantly lower than those of wild-type littermates. The initial blood glucose decrease during an insulin tolerance test was lower and HOMA insulin resistance indices were significantly higher in mutant mice, indicating the development of insulin resistance in mutant mice. The total islet volume, the volume density of beta-cells in the islets, and the total beta-cell volume of heterozygous male mutants was significantly reduced compared with wild-type mice. Electron microscopy of the beta-cells of male mutants showed virtually no secretory insulin granules, the endoplasmic reticulum was severely enlarged, and mitochondria appeared swollen. Thus, Munich Ins2(C95S) mutant mice are considered a valuable model to study the mechanisms of beta-cell dysfunction and death during the development of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/patologia , Insulina/genética , Animais , Glicemia/metabolismo , Mapeamento Cromossômico , DNA/genética , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/patologia , Triagem de Portadores Genéticos , Homozigoto , Humanos , Insulina/sangue , Camundongos , Camundongos Endogâmicos C3H , Pâncreas/patologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA