Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Microanal ; 23(5): 1061-1066, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28849754

RESUMO

In the development of dry self-lubricating composites, not only solid lubricant particle size and distribution are important, but also the correct selection of the solid lubricant characteristics, which should be stable, i.e. not reactive, during the whole processing. In this work, Fe+9 vol% h-BN composites were produced by uniaxial cold compaction and sintering, for which a reaction between h-BN and iron was detected after sintering at 1,150°C. The reaction phase was characterized by optical and scanning electron microscopy and identified by X-ray diffraction and energy-dispersive X-ray spectroscopy. The newly formed phase had high hardness when compared with the iron matrix. The resulting composites presented a high friction coefficient and high wear.

2.
Materials (Basel) ; 12(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893900

RESUMO

Powder metallurgy is a competitive technology to produce ferrous near net shape parts for diverse engineering applications. However, their inherent porosity increases the susceptibility to oxidation and sealing their surface is mandatory to avoid premature degradation. Alongside, polymer derived ceramics (PDCs), such as silicon-carbonitride, have drawn attention concerning their high temperature and chemical stability. However, PDCs undergo volume shrinkage during ceramization that leads to defect formation. The shrinkage can be compensated by the addition of fillers, which are also capable of tailoring the ceramic resulting properties. This work evaluates the processing of PDC-based coatings loaded with ZrO2 and glass fillers to compensate for the shrinkage, densify the coating and seal the sintered steel surface. Therefore, polymeric slurries were sprayed onto sintered steel substrates, which were pyrolyzed at different temperatures for microstructural and oxidation resistance evaluation. Microstructural modifications caused by the enhanced glass viscous flow during pyrolysis at 800 °C resulted in more homogeneous, dense and protective coatings, which reduced the mass gain up to 40 wt% after 100 h of oxidation at 450 °C in air in comparison to the uncoated substrate. Moreover, no macrocracks or spallation were detected, confirming the feasibility of PDC composite barrier coatings for sintered steels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA