Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208128

RESUMO

We present field deployment results of a portable optical absorption spectrometer for localization and quantification of fugitive methane (CH4) emissions. Our near-infrared sensor targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) via line-scanned tunable diode-laser absorption spectroscopy (TDLAS), with Allan deviation analysis yielding a normalized 2.0 ppmv∙Hz-1/2 sensitivity (4.5 × 10-6 Hz-1/2 noise-equivalent absorption) over 5 cm open-path length. Controlled CH4 leak experiments are performed at the METEC CSU engineering facility, where concurrent deployment of our TDLAS and a customized volatile organic compound (VOC) sensor demonstrates good linear correlation (R2 = 0.74) over high-flow (>60 SCFH) CH4 releases spanning 4.4 h. In conjunction with simultaneous wind velocity measurements, the leak angle-of-arrival (AOA) is ascertained via correlation of CH4 concentration and wind angle, demonstrating the efficacy of single-sensor line-of-sight (LOS) determination of leak sources. Source magnitude estimation based on a Gaussian plume model is demonstrated, with good correspondence (R2 = 0.74) between calculated and measured release rates.

2.
Sensors (Basel) ; 17(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858223

RESUMO

Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

3.
Opt Express ; 19(9): 8721-7, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643124

RESUMO

We present characterization results of microscopic platinum wires as bolometers. The wire lengths range from 16 µm down to 300 nm. Thus they are in many cases significantly smaller in size than the wavelength of the radiation from the 1200 K blackbody source they were exposed to. We observe a steep rise in both responsivity ℜ and detectivity D* with decreasing wire size, reaching ℜ = 3.1×10(4) V/W and D* = 2.7×10(9) cm Hz(1/2)/W at room temperature for a 300×300 nm(2) device. Two significant advantages of such small wires as bolometers are their low power requirement and fast response time. Our numerical estimations suggest response times in the order of nanoseconds for the smallest samples. They could help improve resolution and response of thermal imaging devices, for example. We believe the performance may be further improved by optimizing the design and operating parameters.


Assuntos
Platina/química , Termografia/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
4.
Opt Express ; 17(20): 17963-9, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907584

RESUMO

The polarization of the thermal radiation emitted from individual nanoheaters is investigated for nanoheaters with widths ranging from 500 nm to 2000 nm. The polarization is oriented along the long axis of the nanoheater for widths below 600 nm and rotates by 90 degrees and becomes perpendicular for widths above 900 nm. For certain width nanoheaters the orientation of the polarization of the thermal emission can be rotated from parallel to perpendicular by changing the temperature of the nanoheater. The change in the direction of the emitted thermal radiation is explained by thermally excited transverse plasmon modes.


Assuntos
Calefação/instrumentação , Metais , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
5.
Opt Express ; 15(18): 11249-54, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19547481

RESUMO

Here we report polarization-sensitive, thermal radiation measurements of individual, antenna-like, thin film Platinum nanoheaters. These heaters confine the lateral extent of the heated area to dimensions smaller (or comparable) to the thermal emission wavelengths. For very narrow heater structures the polarization of the thermal radiation shows a very high extinction ratio as well as a dipolar-like angular radiation pattern. A simple analysis of the radiation intensities suggests a significant enhancement of the thermal radiation for these very narrow heater structures.

6.
Nat Mater ; 5(5): 388-93, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604081

RESUMO

Strain plays a critical role in the properties of materials. In silicon and silicon-germanium, strain provides a mechanism for control of both carrier mobility and band offsets. In materials integration, strain is typically tuned through the use of dislocations and elemental composition. We demonstrate a versatile method to control strain by fabricating membranes in which the final strain state is controlled by elastic strain sharing, that is, without the formation of defects. We grow Si/SiGe layers on a substrate from which they can be released, forming nanomembranes. X-ray-diffraction measurements confirm a final strain predicted by elasticity theory. The effectiveness of elastic strain to alter electronic properties is demonstrated by low-temperature longitudinal Hall-effect measurements on a strained-silicon quantum well before and after release. Elastic strain sharing and film transfer offer an intriguing path towards complex, multiple-layer structures in which each layer's properties are controlled elastically, without the introduction of undesirable defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA