Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001163

RESUMO

The magnetic field range in which a magnetic sensor operates is an important consideration for many applications. Elliptical planar Hall effect (EPHE) sensors exhibit outstanding equivalent magnetic noise (EMN) on the order of pT/Hz, which makes them promising for many applications. Unfortunately, the current field range in which EPHE sensors with pT/Hz EMN can operate is sub-mT, which limits their potential use. Here, we fabricate EPHE sensors with an increased field range and measure their EMN. The larger field range is obtained by increasing the uniaxial shape-induced anisotropy parallel to the long axis of the ellipse. We present measurements of EPHE sensors with magnetic anisotropy which ranges between 12 Oe and 120 Oe and show that their EMN at 10 Hz changes from 800 pT/Hz to 56 nT/Hz. Furthermore, we show that the EPHE sensors behave effectively as single magnetic domains with negligible hysteresis. We discuss the potential use of EPHE sensors with extended field range and compare them with sensors that are widely used in such applications.

2.
Micromachines (Basel) ; 13(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363918

RESUMO

We report a specially designed magnetic field gradiometer based on a single elliptical planar Hall effect (PHE) sensor, which allows measuring magnetic field at nine different positions in a 4 mm length scale. The gradiometer detects magnetic field gradients with equivalent gradient magnetic noises of ∼958, ∼192, ∼51, and ∼26 nT/m√ Hz (pT/mm√Hz) at 0.1, 1, 10, and 50 Hz, respectively. The performance of the gradiometer is tested in ambient conditions by measuring the field gradient induced by electric currents driven in a long straight wire. This gradiometer is expected to be highly useful for the measurement of magnetic field gradients in confined areas for its small footprint, low noise, scalability, simple design, and low costs.

3.
Langmuir ; 26(8): 5976-84, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20337410

RESUMO

This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

4.
ACS Omega ; 5(32): 20609-20617, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832814

RESUMO

Magnetofluidics is a dynamic research field, which requires novel sensor solutions to boost the detection limit of tiny quantities of magnetized objects. Here, we present a sensing strategy relying on planar Hall effect sensors in droplet-based micro-magnetofluidics for the detection of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an oil carrier phase. The high resolution of the sensor allows the detection of nanoliter-sized superparamagnetic droplets with a concentration of 0.58 mg/cm3, even when they are biased in a geomagnetic field only. The limit of detection can be boosted another order of magnitude, reaching 0.04 mg/cm3 (1.4 million particles in a single 100 nL droplet) when a magnetic field of 5 mT is applied to bias the droplets. With this performance, our sensing platform outperforms the state-of-the-art solutions in droplet-based micro-magnetofluidics by a factor of 100. This allows us to detect ferrofluid droplets in clinically and biologically relevant concentrations and even below without the need of externally applied magnetic fields. These results open the route for new strategies of the utilization of ferrofluids in microfluidic geometries in, e.g., bio(-chemical) or medical applications.

5.
Sci Rep ; 9(1): 20368, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889087

RESUMO

Spin-orbit torques emerge as a promising method for manipulating magnetic configurations of spintronic devices. Here, we show that these torques can induce a magnetization reversal via domain wall propagation which may open new ways in developing novel spintronic devices and in particular in realizing high-density multi-level magnetic memory. Our devices are bi-layer heterostructures of Ni0.8Fe0.2 on top of ß-Ta patterned in the form of two or three crossing ellipses which exhibit in the crossing area shape-induced biaxial and triaxial magnetic anisotropy, respectively. We demonstrate field-free switching between discrete remanent magnetic states of the structures by spin-orbit torques induced by flowing electrical current through one of the ellipses. We note switchings induced by the coupling between the ellipses where current flowing in one ellipse triggers a reversal in a neighboring ellipse which propagates from the center outwards. Numerical tools successfully simulate the observed coupling-induced switching using experimentally extracted parameters.

6.
Sci Rep ; 8(1): 15160, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310132

RESUMO

Spintronic devices often require the ability to locally change the magnetic configuration of ferromagnetic structures on a sub-micron scale. A promising route for achieving this goal is the use of heavy metal/ferromagnetic heterostructures where current flowing through the heavy metal layer generates field-like and anti-damping like torques on the magnetic layer. Commonly, such torques are used to switch magnets with a uniaxial anisotropy between two uniformly magnetized states. Here, we use such torques to switch magnetization in Ta/Ni0.80Fe0.20 heterostructures with uniaxial and biaxial anisotropy, where in the latter the magnetization is non-uniform. The anisotropies are induced by shape and the magnetic state is monitored using the planar Hall effect. As structures with several easy axes induced by shape can be part of a magnetic memory element, the results pave the way for multi-level magnetic memory with spin-orbit torque switching.

7.
J Phys Chem B ; 110(36): 17711-4, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956253

RESUMO

A simple synthetic route to prepare carbon-coated copper or nickel nanoparticles is developed in an ionic liquid under microwave heating. The obtained products are characterized by XRD, UV-spectroscopy, and Raman spectroscopy. The morphologies are studied with the help of TEM, HRSEM, and HRTEM. A bulk transport property for carbon coated nickel is reported in this letter.

8.
J Phys Chem B ; 110(14): 7443-8, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16599523

RESUMO

The dependence of the electronic conductivity of activated carbon electrodes on their potential in electrolyte solutions was examined. Kapton polymer films underwent carbonization (1000 degrees C), followed by a mild oxidation process (CO(2) at 900 degrees C) for various periods of time, to obtain carbons of different pore structures. A specially designed cell was assembled in order to measure the conductivity of carbon electrodes at different potentials in solutions. When the carbon electrodes possessed molecular sieving properties, a remarkable dependence of their conductivity on their charging state was observed. Aqueous electrolyte solutions containing ions of different sizes were used in order to demonstrate this phenomenon. As the average pore size of the activated carbons was larger, their molecular sieving ability was lower, and the dependence of their conductivity on their charging state regained its classical form. This behavior is discussed herein.

9.
Phys Rev Lett ; 98(24): 247204, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17677989

RESUMO

We demonstrate current-induced displacement of ferromagnetic domain walls in submicrometer fabricated patterns of SrRuO3 films. The displacement, monitored by measuring the extraordinary Hall effect, is induced at zero applied magnetic field and its direction is reversed when the current is reversed. We find that current density in the range of 10(9)-10(10) A/m2 is sufficient for domain-wall displacement when the depinning field varies between 50 to 500 Oe. These results indicate relatively high efficiency of the current in displacing domain walls which we believe is related to the narrow width (approximately 3 nm) of domain walls in this compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA