Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(3): 1148-1157, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225593

RESUMO

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.


Assuntos
Celulose , Água , Celulose/química , Umidade , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Água/química
2.
J Environ Manage ; 228: 249-259, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227337

RESUMO

The requirement of promoting a revolution in filtration technology has led to growing devotion in advanced functional materials such as electrospun membranes for filtering devices as a solution for providing water at lower energy costs. In this study, electrospun polyvinylidene fluoride membranes were fabricated by reinforcing 0.5 and 1 wt. % of chitin nanowhiskers in order to improve their thermal stability, mechanical properties, pure water flux and oil-water filtration performance for the possible application as filtration membranes. Morphological analysis revealed the porous and fibrous structure of membranes which confirmed by BET surface area analysis. Incorporation of chitin nanowhiskers improved the mechanical properties of the membranes such as elongation at break and tensile strength (specifically at 1 wt. % of chitin nanowhisker) while resulted in substantial enhancement of their thermal properties. Furthermore, polyvinylidene fluoride/chitin nanowhisker membranes showed enhanced oil-water separation ability, while reinforcement of chitin nanowhisker led to increase pure water flux rate, which measured as a crucial point in filtration membranes. The oil-water separation results compared with a commercial polyvinylidene fluoride membrane and the results signified the potential of electrospun polyvinylidene fluoride/chitin nanowhisker to be used for filtration application.


Assuntos
Quitina/química , Polivinil/química , Elétrons , Óleos/química , Porosidade , Resistência à Tração , Água/química
3.
Int J Biol Macromol ; 274(Pt 2): 133301, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914403

RESUMO

This work reports about the conjugation of glycine C-terminal ethyl and methyl ester peptides and L-tryptophan methyl ester with sodium hyaluronate in aqueous solutions using the peptide coupling agent DMTMM (or short DMT, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride). Detailed infrared (IR) absorbance and 1H and 13C (2D) NMR studies (heteronuclear multi-bond correlation spectroscopy, HMBC) confirmed covalent and regioselective amide bonds with the D-glucuronate, but also proves the presence of DMT traces in all conjugates. The ethyl ester`s methyl protons on the peptides` C-terminal could be used to quantify the degree of substitution of the peptide on the hyaluronate scaffold by NMR. The ester group also proved stable during conjugation and work-up, and could in some cases be selectively cleaved in water whilst leaving the amide bond intact as shown by potentiometric charge titration, NMR and IR. The conjugates did not influence the capability of human umbilical vein endothelial cells (HUVECs) to reduce MTS (5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) to a formazan dye, which points towards a low cytotoxicity for the obtained products. The conjugation method and products could be tested for tissue engineering gels or drug delivery purposes with alternative, biologically active peptides.


Assuntos
Glicina , Células Endoteliais da Veia Umbilical Humana , Ácido Hialurônico , Peptídeos , Triptofano , Ácido Hialurônico/química , Humanos , Triptofano/química , Glicina/química , Peptídeos/química , Peptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
4.
Carbohydr Polym ; 280: 118875, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027118

RESUMO

The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.


Assuntos
Alginatos/química , Quitosana/química , Dextranos/química , Glicoconjugados/química , Peptídeos/química , Materiais Biocompatíveis , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
5.
Int J Biol Macromol ; 222(Pt A): 217-227, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165869

RESUMO

Polysaccharide-based scaffolds are promising carriers for enzyme immobilization. Here, we demonstrate a porous scaffold prepared by direct-ink-writing 3D printing of an ink consisting of nanofibrillated cellulose, carboxymethyl cellulose and citric acid for immobilization application. Negative surface charge introduced by the components made the scaffold amenable for an affinity-like immobilization via the cationic protein module Zbasic2. Zbasic2 fusions of two sugar nucleotide-dependent glycosyltransferases (C-glycosyltransferase, Z-CGT; sucrose synthase, Z-SuSy) were immobilized individually, or co-immobilized, and applied to synthesize the natural C-glycoside nothofagin. The cascade reaction involved ß-C-glycosylation of phloretin (10 mM, ~90 % conversion) from UDP-glucose, provided from sucrose and catalytic amounts of UDP (1.0 mM). Enzymes were co-immobilized at ~65 mg protein/g carrier to receive activities of 9.5 U/g (Z-CGT) and 4.5 U/g (Z-SuSy) in 22-33 % yield (protein) and an effectiveness of 23 % (Z-CGT) and 13 % (Z-SuSy). The scaffold-bound enzymes were recyclable for 5 consecutive reactions.


Assuntos
Produtos Biológicos , Glicosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosilação , Celulose/metabolismo , Uridina Difosfato Glucose
6.
ACS Appl Bio Mater ; 5(12): 5728-5740, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36469033

RESUMO

Biocatalysis is increasingly becoming an alternative method for the synthesis of industrially relevant complex molecules. This can be realized by using enzyme immobilized polysaccharide-based 3D scaffolds as compatible carriers, with defined properties. Especially, immobilization of either single or multiple enzymes on a 3D printed polysaccharide scaffold, exhibiting well-organized interconnected porous structure and morphology, is a versatile approach to access the performance of industrially important enzymes. Here, we demonstrated the use of nanocellulose-based 3D porous scaffolds for the immobilization of glycosyltransferases, responsible for glycosylation in natural biosynthesis. The scaffolds were produced using an ink containing nanofibrillated cellulose (NFC), carboxymethyl cellulose (CMC), and citric acid. Direct-ink-writing 3D printing followed by freeze-drying and dehydrothermal treatment at elevated temperature resulted in chemically cross-linked scaffolds, featuring tunable negative charges (2.2-5.0 mmol/g), pore sizes (10-800 µm), fluid uptake capacity, and exceptional dimensional and mechanical stability in the wet state. The negatively charged scaffolds were applied to immobilize two sugar nucleotide-dependent glycosyltransferases (C-glycosyltransferase, Zbasic2-CGT; sucrose synthase, Zbasic2-SuSy), each harboring a cationic binding module (Zbasic2) to promote charge-based enzyme adsorption. Both enzymes were immobilized at ∼30 mg of protein/g of dry carrier (∼20% yield), independent of the scaffold used. Their specific activities were 0.50 U/mg (Zbasic2-CGT) and 0.19 U/mg (Zbasic2-SuSy), corresponding to an efficacy of 37 and 18%, respectively, compared to the soluble enzymes. The glycosyltransferases were coimmobilized and shown to be active in a cascade reaction to give the natural C-glycoside nothofagin from phloretin (1.0 mM; ∼95% conversion). All enzyme bound scaffolds showed reusability of a maximum of 5 consecutive reactions. These results suggest that the 3D printed and cross-linked NFC/CMC-based scaffolds could present a class of solid carriers for enzyme (co)-immobilization, with promising applications in glycosyltransferase-catalyzed synthesis and other fields of biocatalysis.


Assuntos
Glicosiltransferases , Alicerces Teciduais , Porosidade , Alicerces Teciduais/química , Impressão Tridimensional , Celulose/química
7.
iScience ; 25(5): 104263, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521531

RESUMO

Herein, we fabricated chemically cross-linked polysaccharide-based three-dimensional (3D) porous scaffolds using an ink composed of nanofibrillated cellulose, carboxymethyl cellulose, and citric acid (CA), featuring strong shear thinning behavior and adequate printability. Scaffolds were produced by combining direct-ink-writing 3D printing, freeze-drying, and dehydrothermal heat-assisted cross-linking techniques. The last step induces a reaction of CA. Degree of cross-linking was controlled by varying the CA concentration (2.5-10.0 wt.%) to tune the structure, swelling, degradation, and surface properties (pores: 100-450 µm, porosity: 86%) of the scaffolds in the dry and hydrated states. Compressive strength, elastic modulus, and shape recovery of the cross-linked scaffolds increased significantly with increasing cross-linker concentration. Cross-linked scaffolds promoted clustered cell adhesion and showed no cytotoxic effects as determined by the viability assay and live/dead staining with human osteoblast cells. The proposed method can be extended to all polysaccharide-based materials to develop cell-friendly scaffolds suitable for tissue engineering applications.

8.
Carbohydr Polym ; 267: 118226, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119179

RESUMO

We report here a one-step aqueous method for the synthesis of isolated and purified polysaccharide-amino acid conjugates. Two different types of amino acid esters: glycine methyl ester and L-tryptophan methyl ester, as model compounds for peptides, were conjugated to the polysaccharide carboxymethylcellulose (CMC) in water using carbodiimide at ambient conditions. Detailed and systematic pH-dependent charge titration and spectroscopy (infrared, nuclear magnetic resonance: 1H, 13C- DEPT 135, 1H- 13C HMBC/HSQC correlation), UV-vis, elemental and ninhydrin analysis provided solid and direct evidence for the successful conjugation of the amino acid esters to the CMC backbone via an amide bond. As the concentration of amino acid esters increased, a conjugation efficiency of 20-80% was achieved. Activated charcoal aided base-catalyzed deprotection of the methyl esters improved the solubility of the conjugates in water. The approach proposed in this work should have the potential to tailor the backbone of polysaccharides containing di- or tri-peptides.


Assuntos
Carbodi-Imidas/química , Carboximetilcelulose Sódica/análogos & derivados , Glicina/análogos & derivados , Indicadores e Reagentes/química , Triptofano/análogos & derivados , Carboximetilcelulose Sódica/síntese química , Glicina/síntese química , Estrutura Molecular , Triptofano/síntese química
9.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883744

RESUMO

Modification and functionalization of polymer surface properties is desired in numerous applications, and a standard technique is a treatment with non-equilibrium gaseous plasma. Fluorinated polymers exhibit specific properties and are regarded as difficult to functionalize with polar functional groups. Plasma methods for functionalization of polyvinylidene fluoride (PVDF) are reviewed and different mechanisms involved in the surface modification are presented and explained by the interaction of various reactive species and far ultraviolet radiation. Most authors used argon plasma but reported various results. The discrepancy between the reported results is explained by peculiarities of the experimental systems and illustrated by three mechanisms. More versatile reaction mechanisms were reported by authors who used oxygen plasma for surface modification of PVDF, while plasma sustained in other gases was rarely used. The results reported by various authors are analyzed, and correlations are drawn where feasible. The processing parameters reported by different authors were the gas pressure and purity, the discharge configuration and power, while the surface finish was predominantly determined by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). A reasonably good correlation was found between the surface wettability as probed by WCA and the oxygen concentration as probed by XPS, but there is hardly any correlation between the discharge parameters and the wettability.

10.
Polymers (Basel) ; 13(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960856

RESUMO

The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.

11.
ACS Omega ; 5(45): 29243-29256, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225155

RESUMO

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO3 and Mg(OH)2) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging. The results from the pH-test and back-titration of coated papers show a complete acid neutralization (pH ∼ 7.4) and introduction of adequate alkaline reserve even after prolonged accelerated aging. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and infrared and water contact angle measurements showed the introduction of a thin and smooth hydrophobic NP/TMSC coating on the paper fibers. Acid-catalyzed desilylation of TMSC was observed by declining C-Si infrared absorbance peaks upon aging. The CaCO3 coatings are superior to Mg(OH)2 with respect to a reduced yellowing and lower cellulose degradation upon aging as shown by colorimetric measurements and degree of polymerization analysis. The tensile strength and folding endurance of coated and aged papers are improved to 200-300 and 50-70% as illustrated by tensile strength and double folding endurance measurements.

12.
Polymers (Basel) ; 11(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561552

RESUMO

The flavonoid rutin (RU) is a known antioxidant substance of plant origin. Its potential application in pharmaceutical and cosmetic fields is, however, limited, due to its low water solubility. This limitation can be overcome by polymerization of the phenolic RU into polyrutin (PR). In this work, an enzymatic polymerization of RU was performed in water, without the addition of organic solvents. Further, the chemical structure of PR was investigated using 1H NMR, and FTIR spectroscopy. Size-exclusion chromatography (SEC) was used to determine the molecular weight of PR, while its acid/base character was studied by potentiometric charge titrations. Additionally, this work investigated the antioxidant and free radical scavenging potential of PR with respect to its chemical structure, based on its ability to (i) scavenge non biological stable free radicals (ABTS), (ii) scavenge biologically important oxidants, such as O2•, NO•, and OH•, and (iii) chelate Fe2+. The influence of PR on fibroblast and HaCaT cell viability was evaluated to confirm the applicability of water soluble PR for wound healing application.

13.
RSC Adv ; 9(37): 21288-21301, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521346

RESUMO

Stable and (bio)-compatible nanofibrous matrices showing effective incorporation and release of nonsteroidal anti-inflammatory drugs (NSAIDs) hold a huge potential in tissue regeneration and wound healing. Herein, a two-step, water-based and needleless electrospinning method is used to fabricate thermally cross-linked multifunctional nanofibrous substrates from a hydrophilic cellulose derivative, i.e. carboxymethyl cellulose (CMC), and polyethylene glycol (PEG) with an in situ incorporated NSAID, diclofenac (DCF). Electrospun bi-component blend nanofibers, strongly linked together by ester bonds, with different degrees of cross-linking density are achieved by varying the concentrations of butanetetracarboxylic acid (BTCA, a green polycarboxylic cross-linker) and the sodium hypophosphite (SHP) catalyst, and the temperature. The results demonstrated that not only the dimensional stability and swelling properties could be better controlled but also the morphology, fiber diameter, surface area, pore volume, pore size, and functionality of the cross-linked nanofibers. Release kinetics of DCF from the nanofibrous substrates are controlled and prolonged up to 48 h, and the overall released mass of DCF decreased linearly with increasing cross-linking degree of BTCA and SHP. Fitting of release data using various kinetic models revealed that the release of DCF follows a non-Fickian (diffusion and erosion controlled) to Fickian mechanism (only diffusion-controlled process). Cell viability testing based on crystal violet dyeing showed that the DCF-incorporating nanofibers have excellent biocompatibility and no toxic effect on human skin fibroblast cells. Overall, the reported DCF-incorporating nanofibrous substrate demonstrates high potential to be used as a smart drug delivery system in wound healing, especially due to its noninvasive characteristics.

14.
Colloids Surf B Biointerfaces ; 181: 561-566, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31185448

RESUMO

This work describes the derivatization of dextran using N-(tert-butyloxycarbonyl)-S-(trityl)-L-cysteine in the presence of N,N'-carbonyldiimidazole (CDI) as a coupling agent. Homogeneous reactions in dimethyl sulfoxide allowed for an efficient coupling of the amino acid derivative to the polymer backbone. Derivatization was confirmed by infrared and 13C NMR spectroscopy, size exclusion chromatography and elemental analysis. The presence of hydrophobic protecting groups resulted in a product that can be shaped into water-insoluble particles stable in an aqueous environment and non-toxic for lung epithelial cells. It is suggested that materials composed of ester bonds between amino acids and polysaccharides are useful for targeted drug delivery, bio-imaging or surface functionalization.


Assuntos
Aminoácidos/química , Cisteína/análogos & derivados , Ésteres/química , Cisteína/química , Dextranos/química , Tamanho da Partícula , Propriedades de Superfície
15.
Carbohydr Polym ; 163: 92-100, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267522

RESUMO

This study introduces a novel green in-situ procedure for introduction of silver nanoparticles (Ag NPs) on and into cellulose fibres in a three-stage process. First-stage of the process includes the activation of cellulose fibres in alkaline solution, followed by reduction of silver nitrate to Ag NPs in the second stage, while the last stage of process involves washing and neutralization of fibres. Efficiency of the method towards incorporation of silver particles into the fibres' internal structure was characterized; the coatings' morphology and determination of spatial presence of Ag particles were imagining by the scanning electron microscopy and accompanying energy dispersive x-ray spectroscopy analysis; prepared fibres have superior durability of particles' coating against washing and excellent antimicrobial activity even after 20 washing cycles. Additionally, the water retention of silver treated fibres was improved, while the mechanical properties were not significantly impaired.


Assuntos
Celulose/química , Nanopartículas Metálicas , Nitrato de Prata , Prata
16.
Carbohydr Polym ; 177: 388-396, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962783

RESUMO

Regenerative medicine has a high demand for defined scaffold materials that promote cell growth, stabilize the tissue during maturation and provide a proper three dimensional structure that allows the exchange of nutrients. In many instances nanofiber composites have already shown their potential for such applications. This work elaborates the development of polysaccharide based nanofibers with integrated hydroxyapatite nanoparticles. A detailed study on the formation of electrospun nanofibres from aqueous mixtures of carboxymethyl cellulose polyethylene oxide was performed. The influence of different processing conditions and spinning solution properties using a nozzle-less electrospinning device was systematically studied. Optimized parameters were used to incorporate hydroxyapatite nanoparticles into the fibers. Nanofibers were additionally hydrophobized with alkenyl succinic anhydride (ASA) to render them insoluble in water. The nanofiber webs were thoroughly investigated with respect to morphology, chemical composition and inorganic content. Time dependent biocompatibility testing of the materials with human bone-derived osteoblasts showed no significant reduction in cell viability for the developed materials composed of carboxymethyl cellulose/polyethyleneoxide. Cells grown on hydrophobized materials show similar viability as those grown on a commercial collagen/apatite matrix.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Nanofibras , Osteoblastos/citologia , Engenharia Tecidual , Alicerces Teciduais , Células Cultivadas , Humanos , Polissacarídeos/química
18.
Wien Klin Wochenschr ; 127 Suppl 5: S187-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26404739

RESUMO

The loss of tissue is still one of the most challenging problems in healthcare. Efficient laboratory expansion of skin tissue to reproduce the skins barrier function can make the difference between life and death for patients with extensive full-thickness burns, chronic wounds, or genetic disorders such as bullous conditions. This engineering has been initiated based on the acute need in the 1980s and today, tissue-engineered skin is the reality. The human skin equivalents are available not only as models for permeation and toxicity screening, but are frequently applied in vivo as clinical skin substitutes. This review aims to introduce the most important recent development in the extensive field of tissue engineering and to describe already approved, commercially available skin substitutes in clinical use.


Assuntos
Bandagens , Lacerações/terapia , Tratamento de Ferimentos com Pressão Negativa/métodos , Transplante de Pele/métodos , Pele Artificial , Pele/lesões , Terapia Combinada/métodos , Humanos , Lacerações/diagnóstico
19.
J Biomed Mater Res A ; 102(7): 2305-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23946257

RESUMO

The formation of endothelial cell monolayer on prosthetic implants has not sufficiently explored. The main reasons leading to the development of thrombosis and/or intimal hyperplasia is the lack of endothelialization. In the present work, we have studied the influence of oxygen and fluorine plasma treatment of polyethylene terephthalate (PET) polymers on human microvascular endothelial cell adhesion and proliferation. We characterized the polymer surface, wettability, and oxidation potential upon plasma treatment. Moreover, binding of serum and media compounds on PET surface was monitored by Quartz crystal microbalance method, X-ray photoelectron spectroscopy, and atomic force microscopy. Cell adhesion and morphology was assessed by light and scanning electron microscopy. The influence of plasma treatment on induction of cellular oxidative stress and cell proliferation was evaluated. The results obtained showed that treatment with oxygen plasma decreased the oxidation potential of the PET surface and revealed the highest affinity for binding of serum components. Accordingly, the cells reflected the best adhesion and morphological properties on oxygen-treated PET polymers. Moreover, treatment with oxygen plasma did not induce intracellular reactive oxygen species production while it stimulated endothelial cell proliferation by 25% suggesting the possible use of oxygen plasma treatment to enhance endothelialization of synthetic vascular grafts.


Assuntos
Endotélio Vascular/química , Endotélio Vascular/metabolismo , Oxigênio/química , Polietilenotereftalatos/farmacologia , Linhagem Celular Transformada , Endotélio Vascular/citologia , Humanos , Espectroscopia Fotoeletrônica , Polietilenotereftalatos/química , Ligação Proteica , Soro , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA