Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732075

RESUMO

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.


Assuntos
Melanoma , Melatonina , Sericinas , Cicatrização , Melatonina/uso terapêutico , Melatonina/farmacologia , Humanos , Cicatrização/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Animais , Sericinas/farmacologia , Sericinas/uso terapêutico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892078

RESUMO

The aim of this work was to develop and characterize a thin films composed of hyaluronic acid/ellagic acid for potential medical application. Its principal novelty, distinct from the prior literature in terms of hyaluronic acid films supplemented with phenolic acids, resides in the predominant incorporation of ellagic acid-a distinguished compound-as the primary constituent of the films. Herein, ellagic acid was dissolved in two different solvents, i.e., acetic acid (AcOH) or sodium hydroxide (NaOH), and the surface properties of the resultant films were assessed using atomic force microscopy and contact angle measurements. Additionally, various physicochemical parameters were evaluated including moisture content, antioxidant activity, and release of ellagic acid in phosphate buffered saline. Furthermore, the evaluation of films' biocompatibility was conducted using human epidermal keratinocytes, dermal fibroblasts, and human amelanotic melanoma cells (A375 and G361), and the antimicrobial activity was elucidated accordingly against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 15442. Our results showed that the films exhibited prominent antibacterial properties particularly against Staphylococcus aureus, with the 80HA/20EA/AcOH film indicating the strong biocidal activity against this strain leading to a significant reduction in viable cells. Comparatively, the 50HA/50EA/AcOH film also displayed biocidal activity against Staphylococcus aureus. This experimental approach could be a promising technique for future applications in regenerative dermatology or novel strategies in terms of bioengineering.


Assuntos
Materiais Biocompatíveis , Ácido Elágico , Ácido Hialurônico , Staphylococcus aureus , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Propriedades de Superfície
3.
Cell Mol Life Sci ; 79(3): 143, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35187603

RESUMO

Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death rate, and shortened the duration of hospitalization. Melatonin's ability to arrest SARS-CoV-2 infections may reduce health care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should be used in pandemics such as that caused by SARS-CoV-2.


Assuntos
Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Melatonina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos
4.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834395

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients.


Assuntos
Melanoma , Melatonina , Humanos , Melatonina/metabolismo , Melaninas , 5-Metoxitriptamina , Receptor MT2 de Melatonina , Melanoma/metabolismo , Monofenol Mono-Oxigenase
5.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895177

RESUMO

Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.


Assuntos
Melatonina , Receptores de Hidrocarboneto Arílico , Humanos , Queratinócitos/metabolismo , Ligantes , Melatonina/metabolismo , PPAR gama/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499660

RESUMO

Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor ß (TGF-ß) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-ß paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-ß-dependent inflammation, and dysregulation of downstream TGF-ß signaling in the context of cancer development.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Transdução de Sinais , Neoplasias/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163162

RESUMO

The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall "well-being" and the perception of "health" in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential "aging neutralizers". Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Humanos
8.
Exp Dermatol ; 30(10): 1418-1427, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33131146

RESUMO

Antimicrobial peptides (AMPs) are important components of the innate immune system and are involved in skin protection against environmental insults and in wound healing. Herein, we assessed the gene expression of chemerin (Rarres2), cathelicidin CRAMP (Camp), and three ß-defensins (Defb1, Defb3, and Defb14) in mouse skin during light/dark cycle (LD 12:12) and constant darkness (DD). Next, we examined the survival of bacteria applied on the skin at specific times during the day. We found that the expression of Rarres2, Camp, and Defb1 was the highest at 4 h after the beginning of darkness, during high activity of mice. These rhythms, however, were not maintained under DD in the skin but were present in the liver. This indicated that in the case of skin, a circadian input was masked by daily changes of light in the environment. In contrast, Defb3 and Defb14 showed the highest mRNA levels when the mice slept, and these rhythmic mRNA oscillations were maintained under DD. This shows that Rarres2, Camp, and Defb1 levels in the skin are correlated with high locomotor activity in mice and they are controlled by daily changes of light and dark. Alternatively, oscillations in the mRNA levels of Defb3 and Defb14 seem to protect skin and heal wounds during sleep. These rhythms are maintained under DD, indicating that they are regulated by a circadian clock. Our study suggests that daily AMP expression affects the survival of bacteria on the surface of skin, which depends on the phase of AMP cycling.


Assuntos
Peptídeos Antimicrobianos/genética , Ritmo Circadiano/genética , Pele/microbiologia , Animais , Escuridão , Modelos Animais de Doenças , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Pineal Res ; 70(3): e12728, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650175

RESUMO

Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/metabolismo , Biotransformação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melatonina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
10.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073402

RESUMO

The development of scaffolds mimicking the extracellular matrix containing bioactive substances has great potential in tissue engineering and wound healing applications. This study investigates melatonin-a methoxyindole present in almost all biological systems. Melatonin is a bioregulator in terms of its potential clinical importance for future therapies of cutaneous diseases. Mammalian skin is not only a prominent melatonin target, but also produces and rapidly metabolizes the multifunctional methoxyindole to biologically active metabolites. In our methodology, chitosan/collagen (CTS/Coll)-contained biomaterials are blended with melatonin at different doses to fabricate biomimetic hybrid scaffolds. We use rat tail tendon- and Salmo salar fish skin-derived collagens to assess biophysical and cellular properties by (i) Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), (ii) thermogravimetric analysis (TG), (iii) scanning electron microscope (SEM), and (iv) proliferation ratio of cutaneous cells in vitro. Our results indicate that melatonin itself does not negatively affect biophysical properties of melatonin-immobilized hybrid scaffolds, but it induces a pronounced elevation of cell viability within human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), and reference melanoma cells. These results demonstrate that this indoleamine accelerates re-epithelialization. This delivery is a promising technique for additional explorations in future dermatotherapy and protective skin medicine.


Assuntos
Bandagens , Quitosana/química , Colágeno/química , Derme/metabolismo , Epiderme/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Melatonina , Linhagem Celular , Derme/patologia , Avaliação Pré-Clínica de Medicamentos , Epiderme/patologia , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Melatonina/química , Melatonina/farmacocinética , Melatonina/farmacologia
11.
Exp Dermatol ; 29(9): 860-863, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632950

RESUMO

Despite groundbreaking new treatments such as checkpoint inhibition and targeted therapy, the overall response and survival rates are limited in patients with metastatic melanoma. Here, we hypothesize that melatonin and its metabolites could be promising boosters of the efficacy of BRAF/MEK inhibitors in patients with advanced melanoma. Melatonin, a well-known endogenous synchronizer of the circadian biorhythm has a variety of promising effects for melanoma biology. It regulates proliferation, apoptosis and oxidative phosphorylation via melatonin receptors, and receptor-independent pathways due to its lipophilicity. By means of interfering with the above cellular pathways, melatonin and related compounds may alter the cAMP-PKA-MITF axis, modulate tumor cell metabolism, affect MAPK signalling pathway thereby enhancing the suppressive effect of BRAF/MEK inhibitors on melanoma cell growth, and survival. Such findings could fuel preclinical studies and clinical studies where melatonin or its metabolites are combined with targeted therapy to better treat patients with metastatic melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Melatonina/uso terapêutico , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Quimioterapia Combinada , Humanos , Melatonina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores
12.
J Pineal Res ; 68(2): e12626, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31770455

RESUMO

Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10-4 -10-3  M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10-3  M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.


Assuntos
Epiderme/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Melatonina/metabolismo , Serotonina/análogos & derivados , Envelhecimento da Pele , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Serotonina/metabolismo
13.
J Pineal Res ; 67(4): e12610, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532834

RESUMO

Melanogenesis is a key parameter of differentiation in melanocytes and melanoma cells; therefore, search for factors regulating this pathway are strongly desired. Herein, we investigated the effects of melatonin, a ubiquitous physiological mediator that is found throughout animals and plants. In mammals, the pineal gland secretes this indoleamine into the blood circulation to exert an extensive repertoire of biological activities. Our in vitro assessment indicates an oncostatic capacity of melatonin in time-dependent manner (24, 48, 72 hours) in highly pigmented MNT-1 melanoma cells. The similar pattern of regulation regarding cell viability was observed in amelanotic Sk-Mel-28 cells. Subsequently, MNT-1 cells were tested for the first time for evaluation of melanin/melatonin interaction. Thus primary, electron paramagnetic resonance (EPR) spectroscopy demonstrated that melatonin reduced melanin content. Artificially induced disturbances of melanogenesis by selected inhibitors (N-phenylthiourea or kojic acid) were slightly antagonized by melatonin. Additionally, analysis using transmission electron microscopy has shown that melatonin, particularly at higher dose of 10-3  mol/L, triggered the appearance of premelanosomes (stage I-II of melanosome) and MNT-1 cells synthesize de novo endogenous melatonin shown by LC-MS. In conclusion, these studies show a melanogenic-like function of melatonin suggesting it as an advantageous agent for treatment of pigmentary disorders.


Assuntos
Melaninas/biossíntese , Melanoma/metabolismo , Melatonina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transtornos da Pigmentação/tratamento farmacológico , Transtornos da Pigmentação/metabolismo , Transtornos da Pigmentação/patologia
14.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487387

RESUMO

Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm² caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10-6 M with lower effects seen at 10-9 or 10-4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.


Assuntos
Melanoma/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , 5-Metoxitriptamina/farmacologia , Animais , Cálcio/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Melatonina/análogos & derivados , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fosforilação Oxidativa/efeitos dos fármacos , Fosforilação Oxidativa/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta
15.
Exp Dermatol ; 26(7): 563-568, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27619234

RESUMO

Melatonin is produced in almost all living taxa and is probably 2-3 billion years old. Its pleiotropic activities are related to its local concentration that is secondary to its local synthesis, delivery from distant sites and metabolic or non-enzymatic consumption. This consumption generates metabolites through indolic, kynuric and cytochrome P450 (CYP) mediated hydroxylations and O-demethylation or non-enzymatic processes, with potentially diverse phenotypic effects. While melatonin acts through receptor-dependent and receptor-independent mechanisms, receptors for melatonin metabolites remain to be identified, while their receptor-independent activities are well documented. The human skin with its main cellular components including malignant cells can both produce and rapidly metabolize melatonin in cell-type and context-dependent fashion. The predominant metabolism in human skin occurs through indolic, CYP-mediated and kynuric pathways with main metabolites represented by 6-hydroxymelatonin, N1 -acetyl-N2 -formyl-5-methoxykynuramine (AFMK), N1 -acetyl-5-methoxykynuramine (AMK), 5-methoxytryptamine, 5-methoxytryptophol and 2-hydroxymelatonin. AFMK, 6-hydroxymelatonin, 2-hydroxymelatonin and probably 4-hydroxymelatonin can potentially be produced in epidermis through UVB-induced non-enzymatic melatonin transformation. The skin metabolites are also the same as those produced in lower organisms and plants indicating phylogenetic conservation across diverse species and adaptation by skin of the primordial defense mechanism. As melatonin and its metabolites counteract or buffer environmental stresses to maintain its homeostasis through broad-spectrum activities, both melatoninergic and degradative pathways must be precisely regulated, because the nature of phenotypic regulations will depend on local concentration of melatonin and its metabolites. These can be receptor-mediated or represent non-receptor regulatory mechanisms.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Melatonina/metabolismo , Pele/metabolismo , Raios Ultravioleta , Animais , Catálise , Cricetinae , Epiderme/metabolismo , Feminino , Homeostase , Humanos , Indóis/química , Queratinócitos/metabolismo , Masculino , Melatonina/análogos & derivados , Melatonina/química , Metilação , Mutação , Estresse Oxidativo , Fenótipo , Filogenia , Pele/efeitos da radiação
16.
J Pineal Res ; 61(2): 187-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27117941

RESUMO

Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress.


Assuntos
Trifosfato de Adenosina/biossíntese , Núcleo Celular/metabolismo , Epiderme/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Queratinócitos/metabolismo , Melatonina/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos da radiação , Células Cultivadas , Epiderme/patologia , Humanos
17.
J Pineal Res ; 58(1): 117-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424643

RESUMO

Melatonin, a lipophilic compound synthesized and released from the pineal gland, effectively acts against ultraviolet radiation (UVR), one of the main inducers of epidermal damage, skin cancer, inflammation, and DNA photo damage. One of the common known stress protein induced by UVR is heat shock protein 70 (Hsp70), highly expressed in human keratinocytes, providing cellular resistance to such stressors. Here, using human full-thickness skin and normal human epidermal keratinocytes (NHEK), we investigated the interaction of melatonin and Hsp70 toward UVR-induced inflammatory and apoptotic responses. The following observations were made: (i) UVR upregulated Hsp70 gene expression in human epidermis while melatonin significantly inverted this effect, (ii) similar patterns of regulation were observed within Hsp70 protein level, and (iii) mechanistic studies involving silencing of Hsp70 RNA (Hsp70 siRNA) showed prominent decrease of IκB-α (an inhibitor of NF-κB) and enhanced gene expression of pro-inflammatory cytokines (IL-1ß, IL-6, Casp-1) and pro-apoptotic protein (Casp-3) in NHEK. Parallel investigation using melatonin (10(-3)  m) significantly inverted these responses regardless depletion of Hsp70 RNA suggesting a compensatory action of this compound in the defense mechanisms. Our findings combined with data reported so far thus enrich existing knowledge about the potent anti-apoptotic and anti-inflammatory action of melatonin.


Assuntos
Anti-Inflamatórios/farmacologia , Epiderme/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Queratinócitos/metabolismo , Melatonina/farmacologia , Queimadura Solar/tratamento farmacológico , Raios Ultravioleta/efeitos adversos , Adulto , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 1/genética , Caspase 1/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Epiderme/patologia , Feminino , Inativação Gênica , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinócitos/patologia , Masculino , Inibidor de NF-kappaB alfa , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Queimadura Solar/genética , Queimadura Solar/metabolismo , Queimadura Solar/patologia
18.
FASEB J ; 27(7): 2742-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620527

RESUMO

Indolic and kynuric pathways of skin melatonin metabolism were monitored by liquid chromatography mass spectrometry in human keratinocytes, melanocytes, dermal fibroblasts, and melanoma cells. Production of 6-hydroxymelatonin [6(OH)M], N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5-MT) was detected in a cell type-dependent fashion. The major metabolites, 6(OH)M and AFMK, were produced in all cells. Thus, in immortalized epidermal (HaCaT) keratinocytes, 6(OH)M was the major product with Vmax = 63.7 ng/10(6) cells and Km = 10.2 µM, with lower production of AFMK and 5-MT. Melanocytes, keratinocytes, and fibroblasts transformed melatonin primarily into 6(OH)M and AFMK. In melanoma cells, 6(OH)M and AFMK were produced endogenously, a process accelerated by exogenous melatonin in the case of AFMK. In addition, N-acetylserotonin was endogenously produced by normal and malignant melanocytes. Metabolites showed selective antiproliferative effects on human primary epidermal keratinocytes in vitro. In ex vivo human skin, both melatonin and AFMK-stimulated expression of involucrin and keratins-10 and keratins-14 in the epidermis, indicating their stimulatory role in building and maintaining the epidermal barrier. In summary, the metabolism of melatonin and its endogenous production is cell type-dependent and expressed in all three main cell populations of human skin. Furthermore, melatonin and its metabolite AFMK stimulate differentiation in human epidermis, indicating their key role in building the skin barrier.


Assuntos
Melatonina/metabolismo , Redes e Vias Metabólicas , Pele/metabolismo , 5-Metoxitriptamina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratina-10/metabolismo , Queratina-14/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Cinética , Cinuramina/análogos & derivados , Cinuramina/metabolismo , Cinuramina/farmacologia , Melanócitos/citologia , Melanócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Melatonina/análogos & derivados , Melatonina/farmacologia , Serotonina/análogos & derivados , Serotonina/metabolismo , Pele/citologia , Espectrometria de Massas por Ionização por Electrospray , Suínos
19.
Int J Mol Sci ; 15(10): 17705-32, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25272227

RESUMO

The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a "guardian" of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.


Assuntos
Melatonina/metabolismo , Pele/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Receptores de Melatonina/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta
20.
Front Endocrinol (Lausanne) ; 15: 1414463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808108

RESUMO

This article discusses data showing that mammals, including humans, have two sources of melatonin that exhibit different functions. The best-known source of melatonin, herein referred to as Source #1, is the pineal gland. In this organ, melatonin production is circadian with maximal synthesis and release into the blood and cerebrospinal fluid occurring during the night. Of the total amount of melatonin produced in mammals, we speculate that less than 5% is synthesized by the pineal gland. The melatonin rhythm has the primary function of influencing the circadian clock at the level of the suprachiasmatic nucleus (the CSF melatonin) and the clockwork in all peripheral organs (the blood melatonin) via receptor-mediated actions. A second source of melatonin (Source # 2) is from multiple tissues throughout the body, probably being synthesized in the mitochondria of these cells. This constitutes the bulk of the melatonin produced in mammals and is concerned with metabolic regulation. This review emphasizes the action of melatonin from peripheral sources in determining re-dox homeostasis, but it has other critical metabolic effects as well. Extrapineal melatonin synthesis does not exhibit a circadian rhythm and it is not released into the blood but acts locally in its cell of origin and possibly in a paracrine matter on adjacent cells. The factors that control/influence melatonin synthesis at extrapineal sites are unknown. We propose that the concentration of melatonin in these cells is determined by the subcellular redox state and that melatonin synthesis may be inducible under stressful conditions as in plant cells.


Assuntos
Ritmo Circadiano , Melatonina , Glândula Pineal , Melatonina/metabolismo , Melatonina/sangue , Humanos , Animais , Ritmo Circadiano/fisiologia , Glândula Pineal/metabolismo , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA