Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818632

RESUMO

In living organisms, redox reactions play a crucial role in the progression of disorders accompanied by the overproduction of reactive oxygen and reactive chlorine species, such as hydrogen peroxide and hypochlorous acid, respectively. We demonstrate that green fluorescence graphene quantum dots (GQDs) can be employed for revealing the presence of the hypochlorous acid in aqueous solutions and cellular systems. Hypochlorous acid modifies the oxygen-containing groups of the GQD, predominantly opens epoxide ring C-O-C, forms excessive C=O bonds and damages the carbonic core of GQDs. These changes, which depend on the concentration of the hypochlorous acid and exposure time, manifest themselves in the absorbance and fluorescence spectra of the GQD, and in the fluorescence lifetime. We also show that the GQD fluorescence is not affected by hydrogen peroxide. This finding makes GQDs a promising sensing agent for selective detecting reactive chlorine species produced by neutrophils. Neutrophils actively accumulate GQDs allowing to visualize cells and to examine the redox processes via GQDs fluorescence. At high concentrations GQDs induce neutrophil activation and myeloperoxidase release, leading to the disruption of GQD structure by the produced hypochlorous acid. This makes the GQDs a biodegradable material suitable for various biomedical applications.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes , Ácido Hipocloroso , Neutrófilos , Pontos Quânticos , Células Cultivadas , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Grafite/química , Humanos , Ácido Hipocloroso/análise , Ácido Hipocloroso/metabolismo , Microscopia de Fluorescência , Neutrófilos/química , Neutrófilos/metabolismo , Peroxidase/metabolismo , Pontos Quânticos/análise , Pontos Quânticos/química , Pontos Quânticos/metabolismo
2.
ACS Appl Nano Mater ; 6(6): 4770-4781, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37006910

RESUMO

We propose a simple, fast, and low-cost method for producing Au-coated black Si-based SERS-active substrates with a proven enhancement factor of 106. Room temperature reactive ion etching of silicon wafer followed by nanometer-thin gold sputtering allows the formation of a highly developed lace-type Si surface covered with homogeneously distributed gold islands. The mosaic structure of deposited gold allows the use of Au-uncovered Si domains for Raman peak intensity normalization. The fabricated SERS substrates have prominent uniformity (with less than 6% SERS signal variations over large areas, 100 × 100 µm2). It has been found that the storage of SERS-active substrates in an ambient environment reduces the SERS signal by less than 3% in 1 month and not more than 40% in 20 months. We showed that Au-coated black Si-based SERS-active substrates can be reused after oxygen plasma cleaning and developed relevant protocols for removing covalently bonded and electrostatically attached molecules. Experiments revealed that the Raman signal of 4-MBA molecules covalently bonded to the Au coating measured after the 10th cycle was just 4 times lower than that observed for the virgin substrate. A case study of the reusability of the black Si-based substrate was conducted for the subsequent detection of 10-5 M doxorubicin, a widely used anticancer drug, after the reuse cycle. The obtained SERS spectra of doxorubicin were highly reproducible. We demonstrated that the fabricated substrate permits not only qualitative but also quantitative monitoring of analytes and is suitable for the determination of concentrations of doxorubicin in the range of 10-9-10-4 M. Reusable, stable, reliable, durable, low-cost Au-coated black Si-based SERS-active substrates are promising tools for routine laboratory research in different areas of science and healthcare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA