Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Nutr ; 154(3): 875-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072152

RESUMO

BACKGROUND: The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES: To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS: Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS: Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS: Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.


Assuntos
Anemia Ferropriva , Encefalopatias , Deficiências de Ferro , Animais , Lactente , Humanos , Criança , Anemia Ferropriva/complicações , Anemia Ferropriva/diagnóstico , Macaca mulatta/metabolismo , Prognóstico , Ferro/metabolismo , Hemoglobinas/metabolismo , Encefalopatias/metabolismo , Biomarcadores , Encéfalo/metabolismo
2.
J Nutr ; 153(1): 148-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913448

RESUMO

BACKGROUND: Infantile iron deficiency (ID) causes anemia and compromises neurodevelopment. Current screening relies on hemoglobin (Hgb) determination at 1 year of age, which lacks sensitivity and specificity for timely detection of infantile ID. Low reticulocyte Hgb equivalent (RET-He) indicates ID, but its predictive accuracy relative to conventional serum iron indices is unknown. OBJECTIVES: The objective was to compare diagnostic accuracies of iron indices, red blood cell (RBC) indices, and RET-He for predicting the risk of ID and IDA in a nonhuman primate model of infantile ID. METHODS: Serum iron, total iron binding capacity, unsaturated iron binding capacity, transferrin saturation (TSAT), Hgb, RET-He, and other RBC indices were determined at 2 wk and 2, 4, and 6 mo in breastfed male and female rhesus infants (N = 54). The diagnostic accuracies of RET-He, iron, and RBC indices for predicting the development of ID (TSAT < 20%) and IDA (Hgb < 10 g/dL + TSAT < 20%) were determined using t tests, area under the receiver operating characteristic curve (AUC) analysis, and multiple regression models. RESULTS: Twenty-three (42.6%) infants developed ID and 16 (29.6%) progressed to IDA. All 4 iron indices and RET-He, but not Hgb or RBC indices, predicted future risk of ID and IDA (P < 0.001). The predictive accuracy of RET-He (AUC = 0.78, SE = 0.07; P = 0.003) for IDA was comparable to that of the iron indices (AUC = 0.77-0.83, SE = 0.07; P ≤ 0.002). A RET-He threshold of 25.5 pg strongly correlated with TSAT < 20% and correctly predicted IDA in 10 of 16 infants (sensitivity: 62.5%) and falsely predicted possibility of IDA in only 4 of 38 unaffected infants (specificity: 89.5%). CONCLUSIONS: RET-He is a biomarker of impending ID/IDA in rhesus infants and can be used as a hematological parameter to screen for infantile ID.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Masculino , Feminino , Animais , Reticulócitos/química , Reticulócitos/metabolismo , Anemia/metabolismo , Hemoglobinas/metabolismo , Ferro/metabolismo , Primatas/metabolismo
3.
J Pediatr ; 245: 217-221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114287

RESUMO

The American Academy of Pediatrics recommends universal hemoglobin screening for iron deficiency anemia using hemoglobin <110 g/L at the 1-year-old well child visit. Our retrospective study suggests the need for combined hemoglobin and serum ferritin iron deficiency screening and raising the diagnostic serum ferritin threshold to 24-25 µg/L.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Anemia Ferropriva/diagnóstico , Criança , Ferritinas , Hemoglobinas/análise , Humanos , Lactente , Estudos Retrospectivos
4.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R486-R500, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271351

RESUMO

The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.


Assuntos
Anemia Ferropriva , Anemia , Deficiências de Ferro , Anemia Ferropriva/líquido cefalorraquidiano , Animais , Biomarcadores , Humanos , Ferro , Macaca mulatta , Proteômica
5.
J Pediatr ; 238: 181-186.e3, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34214586

RESUMO

OBJECTIVE: To test the hypothesis that term-born small for gestational age (SGA) neonates have elevated thyroid-stimulating hormone (TSH) concentrations and an increased incidence of congenital hypothyroidism compared with non-SGA term neonates. STUDY DESIGN: This retrospective cohort study included all term neonates screened in Wisconsin in 2015 and 2016. The cohort was divided based on SGA status, defined as birth weight <10th percentile as calculated from the World Health Organization's sex-specific growth charts for age 0-2 years. TSH concentration on first newborn screening performed between birth and 96 hours of life and incidence of congenital hypothyroidism were compared between the SGA and non-SGA groups. RESULTS: A total of 115 466 term neonates, including 11 498 (9.96%) SGA neonates, were included in the study. TSH concentration and incidence of congenital hypothyroidism was significantly higher in the SGA group, but only TSH concentration remained significant when adjusted for potential confounding variables. CONCLUSIONS: Our data do not support a higher incidence of congenital hypothyroidism in term SGA neonates after adjusting for potential confounders. However, TSH concentrations were higher in term SGA neonates compared with term non-SGA neonates. The effects of mild thyroid hormone dysfunction on neurodevelopmental outcomes and development of chronic medical conditions merit long-term study.


Assuntos
Hipotireoidismo Congênito/epidemiologia , Recém-Nascido Pequeno para a Idade Gestacional/sangue , Hipotireoidismo Congênito/sangue , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Triagem Neonatal , Estudos Retrospectivos , Tireotropina/sangue , Wisconsin
6.
J Nutr ; 150(4): 685-693, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722400

RESUMO

BACKGROUND: Iron deficiency is the most common nutrient deficiency in human infants aged 6 to 24 mo, and negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. There can be persistent influences on long-term metabolic health beyond its acute effects. OBJECTIVES: The objective was to determine how iron deficiency in infancy alters the serum metabolomic profile and to test whether these effects persist after the resolution of iron deficiency in a nonhuman primate model of spontaneous iron deficiency. METHODS: Blood was collected from naturally iron-sufficient (IS; n = 10) and iron-deficient (ID; n = 10) male and female infant rhesus monkeys (Macaca mulatta) at 6 mo of age. Iron deficiency resolved without intervention upon feeding of solid foods, and iron status was re-evaluated at 12 mo of age from the IS and formerly ID monkeys using hematological and other indices; sera were metabolically profiled using HPLC/MS and GC/MS with isobaric standards for identification and quantification at both time points. RESULTS: A total of 413 metabolites were measured, with differences in 40 metabolites identified between IS and ID monkeys at 6 mo (P$\le $ 0.05). At 12 mo, iron-related hematological parameters had returned to normal, but the formerly ID infants remained metabolically distinct from the age-matched IS infants, with 48 metabolites differentially expressed between the groups. Metabolomic profiling indicated altered liver metabolites, differential fatty acid production, increased serum uridine release, and atypical bile acid production in the ID monkeys. CONCLUSIONS: Pathway analyses of serum metabolites provided evidence of a hypometabolic state, altered liver function, differential essential fatty acid production, irregular uracil metabolism, and atypical bile acid production in ID infants. Many metabolites remained altered after the resolution of ID, suggesting long-term effects on metabolic health.


Assuntos
Metaboloma/fisiologia , Doenças dos Macacos/sangue , Animais , Ácidos e Sais Biliares/biossíntese , Dieta/veterinária , Ácidos Graxos/biossíntese , Feminino , Deficiências de Ferro , Fígado/fisiopatologia , Macaca mulatta , Masculino , Metabolômica/métodos , Estudos Prospectivos , Uracila/metabolismo
7.
Alcohol Clin Exp Res ; 43(11): 2332-2343, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31524964

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) causes long-term growth and neurodevelopmental deficits that are worsened by maternal iron deficiency (ID). In our preclinical rat model, PAE causes fetal anemia, brain ID, and elevated hepatic iron via increased maternal and fetal hepcidin synthesis. These changes are normalized by a prenatal iron-fortified (IF) diet. Here, we hypothesize that iron status and PAE dysregulate the major upstream pathways that govern hepcidin production-EPO/BMP6/SMAD and IL-6/JAK2/STAT3. METHODS: Pregnant, Long Evans rat dams consumed ID (2 to 6 ppm iron), iron-sufficient (IS, 100 ppm iron), or IF (500 ppm iron) diets and received alcohol (5 g/kg) or isocaloric maltodextrin daily from gestational days (GD) 13.5 to 19.5. Protein and gene expression were quantified in the 6 experimental groups at GD 20.5. RESULTS: PAE did not affect Epo or Bmp6 expression, but reduced p-SMAD1/5/8/SMAD1/5/8 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.01). In contrast, PAE stimulated maternal hepatic expression of Il-6 (p = 0.03) and elevated p-STAT3/STAT3 protein ratios in both IS and ID maternal and fetal liver (all p's < 0.02). PAE modestly elevated maternal Il-1ß, Tnf-α, and Ifn-γ. Fetal cytokine responses to PAE were muted compared with dams, and PAE did not affect hepatic Il-6 (p = 0.78) in IS and ID fetuses. Dietary iron fortification sharply attenuated Il-6 expression in response to PAE, with IF driving a 150-fold decrease (p < 0.001) in maternal liver and a 10-fold decrease (p < 0.01) in fetal liver. The IF diet also normalized p-STAT3/STAT3 ratios in both maternal and fetal liver. CONCLUSIONS: These findings suggest that alcohol-driven stimulation of the IL-6/JAK2/STAT3 pathway mediates the elevated hepcidin observed in the PAE dam and fetus. Normalization of these signals by IF suggests that dysregulated hepcidin is driven by alcohol's disruption of the IL-6/JAK2/STAT3 pathway. Prenatal dietary IF represents a potential therapeutic approach for PAE that warrants further investigation.


Assuntos
Anemia Ferropriva/complicações , Etanol/efeitos adversos , Feto/efeitos dos fármacos , Interleucina-6/sangue , Efeitos Tardios da Exposição Pré-Natal/sangue , Fator de Transcrição STAT3/sangue , Animais , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Interleucina-6/metabolismo , Ferro da Dieta , Gravidez , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Am J Perinatol ; 36(5): 511-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193381

RESUMO

OBJECTIVE: Obesity during pregnancy impedes fetal iron endowment. In adults, both iron depletion and hypoxia stimulate erythropoietin (Epo) production, while hepcidin, the primary iron regulator, is inhibited by Epo and stimulated by obesity. To understand this relationship in fetuses, we investigated obesity, inflammation, and fetal iron status on fetal Epo and hepcidin levels. STUDY DESIGN: Epo, hepcidin, C-reactive protein (CRP), and ferritin levels were measured in 201 newborns of 35 to 40 weeks' gestation with historical risk factors for a low fetal iron endowment, including half with maternal obesity. RESULTS: Epo was unrelated to fetal size, but Epo was directly related to maternal body mass index (BMI; kg/m2) (p < 0.03) and CRP (p < 0.0005) at delivery. Epo levels were twice as likely to be elevated (≥50 IU/L) while comparing the lowest quartile of ferritin with the upper three quartiles (p < 0.01). Hepcidin was directly related to ferritin (p < 0.001) and indirectly related to maternal BMI (p < 0.015), but BMI became nonsignificant when undergoing multivariate analysis. Hepcidin was unrelated to Epo. CONCLUSION: Although some of the fetal responses involving Epo were similar to adults, we did not find a hepcidin-Epo relationship like that of adults, where fetal liver is the site of both hepcidin and Epo production.


Assuntos
Eritropoetina/sangue , Sangue Fetal/química , Hepcidinas/sangue , Obesidade Materna , Adulto , Peso ao Nascer , Índice de Massa Corporal , Proteína C-Reativa/análise , Feminino , Ferritinas/sangue , Desenvolvimento Fetal , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/sangue , Inflamação , Masculino , Análise Multivariada , Gravidez , Estudos Prospectivos
9.
Biochem Cell Biol ; 96(2): 204-212, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29017023

RESUMO

Alcohol consumption during pregnancy places the fetus at risk for permanent physical, cognitive, and behavioral impairments, collectively termed fetal alcohol spectrum disorder (FASD). However, prenatal alcohol exposure (PAE) outcomes vary widely, and growing evidence suggests that maternal nutrition is a modifying factor. Certain nutrients, such as iron, may modulate FASD outcomes. Untreated gestational iron deficiency (ID) causes persistent neurodevelopmental deficits in the offspring that affect many of the same domains damaged by PAE. Although chronic alcohol consumption enhances iron uptake and elevates liver iron stores in adult alcoholics, alcohol-abusing premenopausal women often have low iron reserves due to menstruation, childbirth, and poor diet. Recent investigations show that low iron reserves during pregnancy are strongly associated with a worsening of several hallmark features in FASD including reduced growth and impaired associative learning. This review discusses recent clinical and animal model findings that maternal ID worsens fetal outcomes in response to PAE. It also discusses underlying mechanisms by which PAE disrupts maternal and fetal iron homeostasis. We suggest that alcohol-exposed ID pregnancies contribute to the severe end of the FASD spectrum.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/metabolismo , Ferro , Micronutrientes/uso terapêutico , Neurogênese , Animais , Modelos Animais de Doenças , Feminino , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Ferro/sangue , Ferro/uso terapêutico , Deficiências de Ferro , Fígado/metabolismo , Fígado/patologia , Gravidez
10.
J Neurosci Res ; 96(9): 1586-1599, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29696692

RESUMO

Erythropoietin (Epo) drives iron (Fe) utilization for erythropoiesis, but the potentially resultant tissue iron deficiency (ID) can also impede brain development. Conversely, Epo binds to Epo receptors (EpoR) on immature brain oligodendrocytes and neurons, promoting growth and differentiation. The objective of the study was to examine the interaction between Epo and Fe on myelination in brain development during daily Epo treatment. Male and female Sprague-Dawley rats from postnatal day (P) P4-P12 modeled premature newborns. Dam-fed Fe-sufficient (IS) or postnatal ID groups were given daily subcutaneous sham or erythropoietic Epo injections (425 U. kg-1. d-1 ), ± oral Fe (6 mg. kg-1. d-1 ). Tissues and blood were collected and studied at P12. Epo in the ID groups, in the absence of oral Fe, stimulated microcytic ID anemia along with raising inflammatory markers. Both the microcytic anemia and inflammation improved in the ID + Epo + Fe group. Fe treatment positively impacted erythropoiesis and body Fe (µg/g) in all groups. Relative brain Fe (µg/g rat) was improved in the IS + Epo + Fe group. Brain Fe was not worsened in +Epo groups. Brain weight and brain Fe were related to plasma Epo levels. Amount of myelination was impacted by feeding type, but was not inhibited by Epo. Expression of a protein in myelin, mylein basic protein, was greater in all +Fe groups than -Fe groups. With therapeutic Epo, available body Fe was prioritized for erythropoiesis instead of brain, but Epo did not worsen brain Fe and potentially Epo improved myelination and maturation in the brain.


Assuntos
Cerebelo/fisiologia , Eritropoetina/metabolismo , Hipocampo/fisiologia , Ferro/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Eritropoese , Eritropoetina/administração & dosagem , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ferro/administração & dosagem , Masculino , Proteína Básica da Mielina/metabolismo , Bainha de Mielina , Ratos Sprague-Dawley
11.
J Pediatr ; 200: 166-173.e2, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908648

RESUMO

OBJECTIVE: To investigate the impact of maternal stress during pregnancy on newborn iron and stage 1 iron deficiency at 1 year of age. STUDY DESIGN: In total, 245 mothers and their newborn infants (52% male; 72% white) were recruited at the Meriter Hospital Birthing Center on the basis of known risk factors for iron deficiency. Umbilical cord blood hemoglobin and zinc protoporphyrin/heme (ZnPP/H) were determined to evaluate erythrocyte iron and plasma ferritin was determined to reflect storage iron. Mothers retrospectively reported stress experienced previously during pregnancy on a 25-item questionnaire. Blood was also was collected from 79 infants who were breastfed at 1 year of age. RESULTS: Maternal recall of distress and health concerns during pregnancy correlated with cord blood ZnPP/H indices (r = 0.21, P < .01), even in the absence of major traumatic events. When concurrent with other known risks for iron deficiency, including maternal adiposity, socioeconomic status, and race, maternal stress had a summative effect, lowering cord blood iron. At 1 year, 24% of infants who were breastfed had moderate iron deficiency (plasma ferritin <12 µg/L). Higher cord blood ZnPP/H was predictive of this moderate iron deficiency (95% CI 0.26-1.47, P = .007). When coincident with maternal reports of gestational stress, the likelihood of low plasma ferritin at 1 year increased 36-fold in breastfed infants as compared with low-stress pregnancies (95% CI 1.33-6.83, P = .007). CONCLUSIONS: Maternal recall of stress during pregnancy was associated with lower iron stores at birth. High cord blood ZnPP/H, reflecting low erythrocyte iron, was correlated with the likelihood of stage 1 iron deficiency at 1 year, when rapid growth can deplete storage iron in breastfed infants.


Assuntos
Anemia Ferropriva/sangue , Recém-Nascido Prematuro/sangue , Exposição Materna/efeitos adversos , Complicações na Gravidez , Estresse Psicológico/sangue , Adolescente , Adulto , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , Feminino , Ferritinas/sangue , Seguimentos , Idade Gestacional , Hemoglobinas/metabolismo , Humanos , Recém-Nascido , Masculino , Gravidez , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo , Wisconsin/epidemiologia , Adulto Jovem
12.
Alcohol Clin Exp Res ; 42(6): 1022-1033, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29672865

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) causes neurodevelopmental disability. Clinical and animal studies show gestational iron deficiency (ID) exacerbates PAE's behavioral and growth deficits. In rat, PAE manifests an inability to establish iron homeostasis, increasing hepcidin (maternal and fetal), and fetal liver iron while decreasing brain iron and promoting anemia. Here, we hypothesize dietary iron fortification during pregnancy may mitigate alcohol's disruption of fetal iron homeostasis. METHODS: Pregnant Long-Evans rats, fed iron-sufficient (100 ppm iron) or iron-fortified (IF; 500 ppm iron) diets, received either 5 g/kg alcohol (PAE) or isocaloric maltodextrin daily on gestational days (GD) 13.5 through 19.5. Maternal and fetal outcomes were evaluated on GD20.5. RESULTS: PAE reduced mean fetal weight (p < 0.001) regardless of maternal iron status, suggesting iron fortification did not improve fetal growth. Both PAE (p < 0.01) and IF (p = 0.035) increased fetal liver iron. In fetal brain, PAE (p = 0.015) affected total (p < 0.001) and nonheme iron (p < 0.001) such that iron fortification normalized (p = 0.99) the alcohol-mediated reductions in brain iron and nonheme iron. Iron fortification also improved fetal hematologic indices in PAE including hemoglobin, hematocrit, and mean cell volume (ps<0.001). Iron fortification also normalized hepcidin expression in alcohol-exposed maternal and fetal liver. Neither diet nor PAE affected transferrin (Tf) and ferritin (FTN) content in fetal liver, nor Tf or transferrin receptor in fetal brain. However, IF-PAE fetal brains trended to less FTN content (p = 0.074), suggesting greater availability of nonstorage iron. In PAE, hepcidin levels were linearly related to increased liver iron stores and decreased red blood cell count and brain iron. CONCLUSIONS: Maternal oral iron fortification mitigated PAE's disruption of fetal iron homeostasis and improved brain iron content, hematologic indices, and hepcidin production in this rat PAE model. Clinical studies show maternal ID substantially enhances fetal vulnerability to PAE, and our work supports increased maternal dietary iron intake may improve fetal iron status in alcohol-exposed pregnancies.


Assuntos
Feto/irrigação sanguínea , Hepcidinas/biossíntese , Ferro da Dieta/farmacologia , Ferro/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Índices de Eritrócitos/efeitos dos fármacos , Feminino , Ferritinas/metabolismo , Desenvolvimento Fetal , Feto/efeitos dos fármacos , Hematócrito , Hemoglobinas/efeitos dos fármacos , Homeostase , Fígado/metabolismo , Masculino , Gravidez , Ratos , Receptores da Transferrina/biossíntese , Transferrina/metabolismo
13.
Biol Reprod ; 96(1): 211-220, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395333

RESUMO

In ovine pregnancy, uterine space restriction (USR) resulting from decreased space for placental attachment caused intrauterine growth restriction and impaired nephrogenesis. The fetal kidney renin-angiotensin system (RAS) is involved in nephrogenesis, fluid balance, and iron deposition. Angiotensin II exerts its effects via multiple receptors: angiotensin II 1-8 receptor type 1 (AT 1 R) and type 2 (AT 2 R), and angiotensin II 1-7 Mas receptor (MASR). Objective: : To test the hypothesis that ovine USR is associated with dysregulation of the fetal renal RAS. Methods: : Multiparous pregnant ewes (n = 32), 16 with surgical bifurcated disconnection of one uterine horn to further reduce placental attachment sites, were studied. USR (n = 31) ovine fetuses were compared to nonspace restricted (NSR) singleton controls (n = 22) on gestational day (GD) 120 or GD130, term GD147. Fetal plasma was collected to evaluate plasma renin activity and iron indices. Fetal kidney AT 1 R, AT 2 R, and MASR proteins were assessed by Western immunoblotting and immunohistochemistry. Results: : AT 1 R, AT 2 R, and MASR protein expression was higher in USR at GD130 than aged-matched NSR and USR at GD120, ( P < 0.05 all). AT 1 R and AT 2 R localization was homogenous throughout proximal and distal tubules in both USR and NSR at both gestational dates. MASR localization was punctate throughout renal cortical structures including tubules and glomeruli in both USR and NSR, shifted to intranuclear at GD130. Plasma renin activity was inversely related to plasma osmolarity ( P < 0.02) and was downregulated in USR at GD130 ( P < 0.05). Conclusions: : By late gestation, USR upregulated renal angiotensin receptor expression, an effect with potential functional implications.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Córtex Renal/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Animais , Creatinina/sangue , Modelos Animais de Doenças , Feminino , Ferro/metabolismo , Concentração Osmolar , Gravidez , Renina/sangue , Ovinos
14.
J Pediatr ; 172: 20-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26970931

RESUMO

OBJECTIVE: To determine the impact of maternal obesity and gestational weight gain across pregnancy on fetal indices of inflammation and iron status. STUDY DESIGN: Eighty-five healthy term newborns delivered via elective cesarean were categorized by 2 maternal body mass index (BMI) thresholds; above or below 30 kg/m(2) or above or below 35 kg/m(2). Umbilical cord plasma levels of C-reactive protein, interleukin (IL)-6, tumor necrosis factor (TNF)-α, ferritin, and hepcidin were assayed. Cytokines released by phytohemagglutinin-stimulated umbilical cord mononuclear cells (MNCs) were assayed. RESULTS: Maternal class II obesity, defined as BMI of 35 kg/m(2) and above, predicted higher C-reactive protein and TNF-α in umbilical cord plasma (P < .05 for both), and also proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) from stimulated MNC (P < .05 for all). The rise in plasma TNF-α and MNC TNF-α was not linear but occurred when the threshold of BMI 35 kg/m(2) was reached (P < .005, P < .06). Poorer umbilical cord iron indices were associated with maternal obesity. When ferritin was low, IL-6 was higher (P < .04), but this relationship was present primarily when maternal BMI exceeded 35 kg/m(2) (P < .03). Ferritin was correlated with hepcidin (P < .0001), but hepcidin was unrelated to either maternal BMI or inflammatory indices. CONCLUSIONS: Class II obesity and above during pregnancy is associated with fetal inflammation in a threshold fashion. Although maternal BMI negatively impacted fetal iron status, hepcidin, related to obesity in adults, was related to iron status and not obesity in fetuses. Pediatricians should be aware of these relationships.


Assuntos
Citocinas/sangue , Sangue Fetal/metabolismo , Inflamação/metabolismo , Ferro/sangue , Obesidade/sangue , Adulto , Índice de Massa Corporal , Feminino , Feto/metabolismo , Humanos , Recém-Nascido , Inflamação/complicações , Masculino , Troca Materno-Fetal , Gravidez
15.
J Nutr ; 151(9): 2509-2510, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34320201

Assuntos
Ferro
16.
J Nutr ; 146(6): 1180-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27146918

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) causes neurodevelopmental disabilities, and gestational iron deficiency (ID) selectively worsens learning and neuroanatomical and growth impairments in PAE. It is unknown why ID worsens outcomes in alcohol-exposed offspring. OBJECTIVE: We hypothesized that PAE alters maternal-fetal iron distribution or its regulation. METHODS: Nulliparous, 10-wk-old, Long-Evans rats were mated and then fed iron-sufficient (100 mg Fe/kg) or iron-deficient (≤4 mg Fe/kg) diets. On gestational days 13.5-19.5, dams received either 5.0 g ethanol/kg body weight (PAE) or isocaloric maltodextrin by oral gavage. On gestational day 20.5, maternal and fetal clinical blood counts, tissue mineral and iron transport protein concentrations, and hepatic hepcidin mRNA expression were determined. RESULTS: In fetal brain and liver (P < 0.001) and in maternal liver (P < 0.005), ID decreased iron (total and nonheme) and ferritin content by nearly 200%. PAE reduced fetal bodyweight (P < 0.001) and interacted with ID (P < 0.001) to reduce it by an additional 20%. Independent of maternal iron status, PAE increased fetal liver iron (30-60%, P < 0.001) and decreased brain iron content (total and nonheme, 15-20%, P ≤ 0.050). ID-PAE brains had lower ferritin, transferrin, and transferrin receptor content (P ≤ 0.002) than ID-maltodextrin brains. PAE reduced fetal hematocrit, hemoglobin, and red blood cell numbers (P < 0.003) independently of iron status. Unexpectedly, and also independent of iron status, PAE increased maternal and fetal hepatic hepcidin mRNA expression >300% (P < 0.001). CONCLUSIONS: PAE altered fetal iron distribution independent of maternal iron status in rats. The elevated iron content of fetal liver suggests that PAE may have limited iron availability for fetal erythropoiesis and brain development. Altered fetal iron distribution may partly explain why maternal ID substantially worsens growth and behavioral outcomes in PAE.


Assuntos
Transtornos do Espectro Alcoólico Fetal/sangue , Hepcidinas/metabolismo , Deficiências de Ferro , Ferro/sangue , Anemia Ferropriva/sangue , Animais , Peso Corporal , Encéfalo/metabolismo , Dieta , Modelos Animais de Doenças , Feminino , Ferritinas/genética , Ferritinas/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Hepcidinas/genética , Ferro/administração & dosagem , Fígado/metabolismo , Troca Materno-Fetal , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
17.
J Pediatr Hematol Oncol ; 38(3): 210-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26907656

RESUMO

OBJECTIVE: To determine whether prenatal risk factors (RFs) that predict cord blood iron status in term newborns also predict iron status of premature newborns. STUDY DESIGN: Cord blood iron indices from 80 preterm newborns were compared with historical and demographic RFs for developing iron deficiency if born at term. RESULT: The presence of multiple RFs did not incrementally interfere with cord iron status in preterm newborns. Poorer iron status accompanied being small for gestational age in prematurity, but other RFs, including diabetes, had relatively little impact. CONCLUSION: Growth-restricted preterm newborns are at risk for poor iron endowment, likely due to uteroplacental insufficiency. Other RFs were less impactful on iron status of premature newborns than in term newborns, likely reflecting that disruptive effects of RFs are more impactful in the third trimester. Understanding RFs for poor iron endowment is important for clinical recognition and treatment of premature babies.


Assuntos
Sangue Fetal/química , Retardo do Crescimento Fetal/sangue , Recém-Nascido Prematuro/sangue , Ferro/sangue , Feminino , Humanos , Recém-Nascido , Gravidez , Complicações na Gravidez/sangue , Estudos Prospectivos , Fatores de Risco
18.
Reprod Fertil Dev ; 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876724

RESUMO

Gestational iron deficiency (ID) can alter developmental programming through impaired nephron endowment, leading to adult hypertension, but nephrogenesis is unstudied. Iron status and renal development during dietary-induced gestational ID (<6 mg Fe kg-1 diet from Gestational Day 2 to Postnatal Day (PND) 7) were compared with control rats (198 mg Fe kg-1 diet). On PND2-PND10, PND15, PND30 and PND45, blood and tissue iron status were assessed. Nephrogenic zone maturation (PND2-PND10), radial glomerular counts (RGCs), glomerular size density and total planar surface area (PND15 and PND30) were also assessed. Blood pressure (BP) was measured in offspring. ID rats were smaller, exhibiting lower erythrocyte and tissue iron than control rats (PND2-PND10), but these parameters returned to control values by PND30-PND45. Relative kidney iron (µg g-1 wet weight) at PND2-PND10 was directly related to transport iron measures. In ID rats, the maturation of the active nephrogenic zone was later than control. RGCs, glomerular size, glomerular density, and glomerular planar surface area were lower than control at PND15, but returned to control by PND30. After weaning, the kidney weight/rat weight ratio (mg g-1) was heavier in ID than control rats. BP readings at PND45 were lower in ID than control rats. Altered kidney maturation and renal adaptations may contribute to glomerular size, early hyperfiltration and long-term renal function.

19.
Pediatr Res ; 73(3): 277-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23202722

RESUMO

BACKGROUND: Fetal growth restriction is reported to be associated with impaired placental iron transport. Transferrin receptor (TfR) is a major placental iron transporter in humans but has not been studied in sheep. TfR is regulated by both iron and nitric oxide (NO), the molecule produced by endothelial nitric oxide synthase (eNOS). We hypothesized that limited placental development downregulates both placental TfR and eNOS expression, thereby lowering fetal tissue iron. METHODS: An ovine surgical uterine space restriction (USR) model, combined with multifetal gestation, tested the extremes of uterine and placental adaptation. Blood, tissues, and placentomes from non-space restricted (NSR) singletons were compared with USR fetuses at gestational day (GD) 120 or 130. RESULTS: When expressed proportionate to fetal weight, liver iron content did not differ, whereas renal iron was higher in USR vs. NSR fetuses. Renal TfR protein expression did not differ, but placental TfR expression was lower in USR fetuses at GD130. Placental levels of TfR correlated to eNOS. TfR was localized throughout the placentome, including the hemophagous zone, implicating a role for TfR in ovine placental iron transport. CONCLUSION: Fetal iron was regulated in an organ-specific manner. In USR fetuses, NO-mediated placental adaptations may prevent the normal upregulation of placental TfR at GD130.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ferro/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Receptores da Transferrina/metabolismo , Útero/fisiologia , Análise de Variância , Animais , Western Blotting , Pesos e Medidas Corporais , Feminino , Feto , Imuno-Histoquímica , Rim/anatomia & histologia , Rim/metabolismo , Tamanho do Órgão/fisiologia , Placentação , Gravidez , Ovinos , Útero/anatomia & histologia
20.
J Pediatr Hematol Oncol ; 35(6): 473-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23042017

RESUMO

BACKGROUND: Maternal anemia and several complications of pregnancy can affect fetal iron acquisition. AIM: Because it is unknown whether the effects of demographic and maternal risk factors (RF) are summative, we examined cord iron status in newborns with multiple RF for acquiring iron deficiency. METHODS: Cord blood indices from healthy control newborns with and without RF for newborn or infant iron deficiency were studied. RESULTS: Newborns with greater RF had poorer erythrocyte and storage iron status. Poorest status was seen if mothers with comorbid obesity and diabetes delivered large-for-gestation newborns. Findings highlight the importance of identifying RF.


Assuntos
Anemia Ferropriva/sangue , Sangue Fetal/química , Ferro/sangue , Complicações na Gravidez/sangue , Adolescente , Adulto , Peso ao Nascer , Diabetes Mellitus , Contagem de Eritrócitos , Feminino , Sangue Fetal/metabolismo , Hemoglobinas/análise , Humanos , Masculino , Obesidade/complicações , Gravidez , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA