Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Eye Res ; 13(6): 391-400, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7924403

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) is an extracellular glycolipoprotein which in higher vertebrates has a 4-repeat structure and carries endogenous vitamin A and fatty acids. The location of IRBP's 1-2 binding sites for retinol is unknown. To begin to understand which repeat(s) are responsible for ligand-binding, we expressed the fourth repeat of Xenopus IRBP in E. coli to determine if it could by itself bind all-trans retinol. Our expression studies used a polyhistidine fusion domain to purify the recombinant protein directly from inclusion bodies. The fusion protein could be renatured without aggregation if refolded at a sufficiently dilute concentration (< 3 microM). The recombinant fourth repeat of Xenopus IRBP binds [3H]all-trans retinol and the fluorescence of this ligand increases 8-fold upon binding. The binding is saturable with a Kd = 0.4 microM. The expression of recombinant IRBP fragments as fusion proteins in prokaryotes will be useful for defining the structural requirements for ligand binding by this interesting protein.


Assuntos
Escherichia coli/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Sequências Repetitivas de Ácido Nucleico , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Animais , Sítios de Ligação , Western Blotting , DNA , Eletroforese em Gel de Poliacrilamida , Proteínas do Olho/isolamento & purificação , Expressão Gênica , Ligantes , Dobramento de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Ligação ao Retinol/isolamento & purificação , Espectrometria de Fluorescência , Xenopus
3.
Biophys J ; 63(5): 1244-55, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1477276

RESUMO

Fourier transform infrared difference spectra were measured at 30-s intervals after a complete bleach of rhodopsin (rho) samples at 20 degrees C and three different pH values. At each pH, all of the spectra could be fit globally to two exponential decay processes. Using a branched unimolecular kinetic model in which metarhodopsin II (meta II) is hydrolyzed to opsin and retinal both directly and through metarhodopsin III (meta III), we calculated rho-->meta II, rho-->meta III, and rho-->opsin difference spectra at each of the pH values and obtained estimates for the microscopic rate constants at each pH. Because of assumptions that had to be made about the branching ratio between the meta II decay pathways, some uncertainties remain in our calculated rho-->meta III difference spectrum at each pH. Nevertheless, our data covering long time ranges, especially those obtained at pH 8, place significant new constraints on the spectrum of meta III and thus on its structure. The rho-->meta II spectrum shows no significant pH dependence over the range examined (pH 5.5-8). However, the rho-->meta III and rho-->opsin spectra each include a limited subset of pH-dependent peaks, which are mostly attributable to titratable amino acid side chains. Our observations can be used to refine an earlier conclusion that the visual pigment refolds to a rhodopsin-like conformation during meta II decay (Rothschild, K.J., J. Gillespie, and W.J. DeGrip. 1987 Biophys. J. 51:345-350). Most of this refolding occurs in the same way at pH values ranging from 5.5 to 8 and whether meta II decays to meta III or opsin. Meta II displays unique spectral perturbations that are mostly attributable to a few residues, probably including three to four aspartic or glutamic acids and an arginine.


Assuntos
Rodopsina/análogos & derivados , Opsinas de Bastonetes/química , Animais , Fenômenos Biofísicos , Biofísica , Bovinos , Análise de Fourier , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Estrutura Molecular , Conformação Proteica , Rodopsina/química , Espectrofotometria Infravermelho
4.
Proteins ; Suppl 4: 23-43, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11013398

RESUMO

The contribution of the alpha(1)beta(1)half-oxygenated tetramer [alphabeta:alphaO(2)betaO(2)] (species 21) to human hemoglobin cooperativity was evaluated using cryogenic isoelectric focusing. The cooperative free energy of binding, reflecting O(2)-driven protein structure changes, was measured as (21)DeltaG(c) = 5.1 +/- 0. 3 kcal for the Zn/FeO(2) analog. For the Fe/FeCN analog, (21)DeltaG(c) was estimated as 4.0 kcal after correction for a CN ligand rearrangement artifact, demonstrating that ligand rearrangement does not invalidate previous conclusions regarding this species. In the context of the entire Hb cooperativity cascade, which includes eight intermediate species, the 21 tetramer is highly abundant relative to the other doubly-ligated species, providing strong support for the previously determined consensus partition function of O(2) binding and for the Symmetry Rule model of hemoglobin cooperativity (Ackers et al., Science 1992;255:54-63). Cooperativity of normal human hemoglobin is shown to depend on site-configuration, and not solely the number of O(2) bound, nor the occupancy of alpha vs. beta subunits. Verification of a unique contribution from the alpha(1)beta(1)doubly-oxygenated species to the equilibrium O(2) binding curve strongly reinforces the Symmetry Rule interpretation that the alpha(1)beta(1)dimer acts both as a structural and functional element in cooperative O(2) binding.


Assuntos
Hemoglobinas/química , Oxigênio/química , Regulação Alostérica , Dimerização , Hemoglobinas/metabolismo , Humanos , Modelos Químicos , Termodinâmica , Zinco/química
5.
Biochemistry ; 32(8): 1981-90, 1993 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-8448157

RESUMO

In the bacteriorhodopsin photocycle the transported proton crosses the major part of the hydrophobic barrier during the M to N reaction; in this step the Schiff base near the middle of the protein is reprotonated from D96 located near the cytoplasmic surface. In the recombinant D212N protein at pH > 6, the Schiff base remains protonated throughout the photocycle [Needleman, Chang, Ni, Váró, Fornés, White, & Lanyi (1991) J. Biol. Chem. 266, 11478-11484]. Time-resolved difference spectra in the visible and infrared are described by the kinetic scheme BR-->K<==>L<==>N (-->N')-->BR. As evidenced by the large negative 1742-cm-1 band of the COOH group of the carboxylic acid, deprotonation of D96 in the N state takes place in spite of the absence of the unprotonated Schiff base acceptor group of the M intermediate. Instead of internal proton transfer to the Schiff base, the proton is released to the bulk, and can be detected with the indicator dye pyranine during the accumulation of N'. The D212N/D96N protein has a similar photocycle, but no proton is released. As in wild-type, deprotonation of D96 in the N state is accompanied by a protein backbone conformational change indicated by characteristic amide I and II bands. In D212N the residue D96 can thus deprotonate independent of the Schiff base, but perhaps dependent on the detected protein conformational change. This could occur through increased charge interaction between D96 and R227 and/or increased hydration near D96. We suggest that the proton transfer from D96 to the Schiff base in the wild-type photocycle is driven also by such a decrease in the pKa of D96.


Assuntos
Ácido Aspártico , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Halobacterium salinarum/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Bases de Schiff , Espectrofotometria , Espectrofotometria Infravermelho
6.
Biochemistry ; 37(13): 4336-45, 1998 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-9521754

RESUMO

In human hemoglobin (Hb) the beta37 tryptophan residue (betaW37), located at the hinge region of the alpha1beta2 interface, forms many contacts with alpha subunit residues of the opposite dimer, in both the T and R quaternary structures. We have carried out equilibrium O2 binding studies on a series of recombinant Hbs that have mutations at this residue site: betaW37Y, betaW37A, betaW37G, and betaW37E. Binding isotherms measured at high concentrations of these mutants were found to be shifted toward increased affinity and decreased cooperativity from that of the normal HbA0 tetramer. Analysis of these binding isotherms indicated that amino acid substitutions at the beta37 position could both destabilize the tetrameric form of the mutants relative to their constituent dimers and also alter cooperativity of the intact tetrameric species. These alterations from wild-type function are dependent on the particular side chain substituted, with the magnitude of change increasing as Trp is substituted by Tyr, Ala, Gly, and Glu. The dimer to tetramer assembly free energy of deoxy-betaW37E, the most perturbed mutant in the series, was measured using analytical gel chromatography to be 9 kcal/tetramer less favorable than that of deoxy HbA0. Stabilizing the betaW37E tetramer by addition of IHP, or by cross-linking at the alphaK99 positions, does not restore normal O2 binding behavior. Thermodynamic parameters of all the mutants were found to correlate with their CO binding rates and with their high-resolution X-ray crystal structures (see accompanying papers: Kwiatkowski et al. (1998) Biochemistry 37, 4325-4335; Peterson & Friedman (1998) Biochemistry 37, 4346-4357; Kavanaugh et al. (1998) Biochemistry 37, 4358-4373].


Assuntos
Hemoglobina A/metabolismo , Oxigênio/metabolismo , Substituição de Aminoácidos , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Hemoglobina A/química , Hemoglobina A/genética , Humanos , Mutação , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA