Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(10): 106402, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636483

RESUMO

We present a direct NMR method to determine whether the interactions in a Tomonaga-Luttinger liquid (TLL) state of a spin-1/2 Heisenberg antiferromagnetic ladder are attractive or repulsive. For the strong-leg spin ladder compound (C_{7}H_{10}N)_{2}CuBr_{4} we find that the isothermal magnetic field dependence of the NMR relaxation rate T_{1}^{-1}(H) displays a concave curve between the two critical fields bounding the TLL regime. This is in sharp contrast to the convex curve previously reported for a strong-rung ladder, (C_{5}H_{12}N)_{2}CuBr_{4}. We show that the concavity and the convexity of T_{1}^{-1}(H), which is a fingerprint of spin fluctuations, directly reflect the attractive and repulsive fermionic interactions in the TLL, respectively. The interaction sign is alternatively determined from an indirect method combining bulk magnetization and specific heat data.

2.
Phys Rev Lett ; 115(2): 027006, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26207500

RESUMO

Magnetoresistivity ρ(xx) and Hall resistivity ρ(xy) in ultrahigh magnetic fields up to 88 T are measured down to 0.15 K to clarify the multiband electronic structure in high-quality single crystals of superconducting FeSe. At low temperatures and high fields we observe quantum oscillations in both resistivity and the Hall effect, confirming the multiband Fermi surface with small volumes. We propose a novel approach to identify from magnetotransport measurements the sign of the charge carriers corresponding to a particular cyclotron orbit in a compensated metal. The observed significant differences in the relative amplitudes of the quantum oscillations between the ρ(xx) and ρ(xy) components, together with the positive sign of the high-field ρ(xy), reveal that the largest pocket should correspond to the hole band. The low-field magnetotransport data in the normal state suggest that, in addition to one hole and one almost compensated electron band, the orthorhombic phase of FeSe exhibits an additional tiny electron pocket with a high mobility.

3.
Phys Rev Lett ; 110(21): 216406, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745903

RESUMO

We report neutron diffraction measurements on U(Ru(0.96)Rh(0.04))(2)Si(2) single crystal under pulsed high magnetic fields up to 30 T applied along the tetragonal c axis. The high-field experiments revealed that the field-induced phase II above 26 T corresponds to a commensurate up-up-down ferrimagnetic structure characterized by the wave vector q=(2/3,0,0) with the magnetic moments parallel to the c axis, which naturally explains the one-third magnetization plateau and the substantially changed Fermi surface in phase II. This a-axis modulated magnetic structure indicates that the phase II near the hidden order phase is closely related to the characteristic incommensurate magnetic fluctuations at Q(1)=(0.6,0,0) in the pure system URu(2)Si(2), in contrast to the pressure-induced antiferromagnetic order at Q(0)=(1,0,0).

5.
J Phys Condens Matter ; 20(23): 235228, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-21694319

RESUMO

We report the magnetic structure of (Co(0.5)Ni(0.5))(3)V(2)O(8) (CNVO) deduced by single crystal neutron diffraction. This compound exhibits features which differ from that of its parent compounds, which are absolutely collinear along the a axis for Co(3)V(2)O(8) (CVO) or exhibit magnetic moments predominantly in the a-b plane with small components along c in the case of Ni(3)V(2)O(8) (NVO). The averaged magnetic moments of the statistically distributed Ni(2+) and Co(2+) ions in CNVO are oriented in the a-c plane and form loops of quasiferromagnetically coupled spins. These loops are connected along the a axis and separated along the c axis by cross-tie spins forming a quasiferromagnetic wave with the upper part of the respective neighbouring loops. The magnetic moments are sinusoidally modulated by the propagation vector k = (0.49,0,0) with an average amplitude of 1.59(1) µ(B) for a magnetic ion on a cross-tie site and 1.60(1) µ(B) for the spine site. In addition to neutron diffraction, specific heat and magnetization data, which confirm that the only magnetic phase transition above 1.8 K is the onset of antiferromagnetic order at T(N) = 7.4(1) K, are presented.

6.
Rev Sci Instrum ; 89(5): 053905, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864875

RESUMO

We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.

7.
Nat Commun ; 7: 13075, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762260

RESUMO

URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.

8.
Phys Rev Lett ; 99(13): 137206, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17930632

RESUMO

The phase diagram of the quasi-two-dimensional antiferromagnet BaNi(2)V(2)O(8) is studied by specific heat, thermal expansion, magnetostriction, and magnetization for magnetic fields applied perpendicular to c. At micro(o)H* approximately 1.5 T, a crossover to a high-field state, where T(N)(H) increases linearly, arises from a competition of intrinsic and field-induced in-plane anisotropies. The pressure dependences of T(N) and H* are interpreted using the picture of a pressure-induced in-plane anisotropy. Even at zero field and ambient pressure, in-plane anisotropy cannot be neglected, which implies deviations from pure Berezinskii-Kosterlitz-Thouless behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA