Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Contam Hydrol ; 253: 104124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603303

RESUMO

Quantifying VOC transport from contaminated groundwater to streams is challenging and important for understanding off-site migration of VOCs, cross-media contamination (groundwater to surface water and eventually air), and potential impacts on downstream ecosystems and human populations. A streambed point sampling approach was used to quantify fluxes of water and 14 VOCs from groundwater to an urban stream in North Carolina, USA, during summer (June 2015) and winter (January 2016). The approach is unique in coupling measurements of vertical hydraulic conductivity, vertical hydraulic head gradient, and groundwater VOC concentration at each individual sampling point, reducing or eliminating some potential concerns with other Darcian methods for quantifying VOC inputs to streams. Most results were consistent with discharge of two main VOC plumes on opposite sides of the stream. Plume 1 from the west side was dominated by cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) at mean concentrations of 19 and 11 µg L-1, respectively. Plume 2 from the east side was dominated by benzene (mean concentration 56 µg L-1). Plume 2 was not previously known, and the improved sampling approach allowed VOC discharge from both plumes to be quantified simultaneously. For 13 of the 14 detected VOCs, the mean VOC flux from groundwater to the stream (fVOC) was higher in January 2016 than in June 2015, mainly because groundwater flux was higher in January. The only exception was cDCE, the most abundant VOC in Plume 1, which had mean fVOC values of 9.8 and 9.5 mg m-2 d-1 in June 2015 and January 2016, respectively. Benzene was the most abundant VOC in Plume 2 and had mean fVOC values of 11 and 37 mg m-2 d-1 in June 2015 and January 2016, respectively. High groundwater flux drove almost all the occurrences of high VOC flux. For a given VOC, the flow-weighted mean concentration (with each VOC concentration weighted by the upward groundwater flux at the VOC sampling point) was generally larger than the unweighted mean concentration. Thus, flow-weighting of concentrations gave a more accurate indication of the average VOC concentration in net groundwater discharge to the stream. An estimate of total VOC mass discharge from groundwater to the study reach of the stream, 3.6 kg of VOC per year, was based on the fVOC results and streambed area in the reach. The bulk of this discharge was due to benzene, cDCE, and VC, with individual mass discharges of 2.1, 0.83, and 0.40 kg yr-1, respectively. Estimates of maximum potential VOC degradation in the streambed suggest that the 3.6 kg yr-1 estimate of mass discharge was not sensitive to potential degradation of VOCs in the streambed sediments above the groundwater sampling depth.


Assuntos
Água Subterrânea , Cloreto de Vinil , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Benzeno , Ecossistema , Água
2.
Sci Total Environ ; 831: 154763, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35339537

RESUMO

The Cape Fear River is an important source of drinking water in North Carolina, and many drinking water intakes in the watershed are affected by per- and polyfluoroalkyl substances (PFAS). We quantified PFAS concentrations and loads in river water upstream and downstream of a PFAS manufacturing plant that has been producing PFAS since 1980. River samples collected from September 2018 to February 2021 were analyzed for 13 PFAS at the upstream station and 43-57 PFAS downstream near Wilmington. Frequent PFAS sampling (daily to weekly) was conducted close to gauging stations (critical to load estimation), and near major drinking water intakes (relevant to human exposure). Perfluoroalkyl acids dominated upstream while fluoroethers associated with the plant made up about 47% on average of the detected PFAS downstream. Near Wilmington, Σ43PFAS concentration averaged 143 ng/L (range 40-377) and Σ43PFAS load averaged 3440 g/day (range 459-17,300), with 17-88% originating from the PFAS plant. LOADEST was a useful tool in quantifying individual and total quantified PFAS loads downstream, however, its use was limited at the upstream station where PFAS levels in the river were affected by variable inputs from a wastewater treatment plant. Long-term monitoring of PFAS concentrations is warranted, especially at the downstream station. Results suggest a slight downward trend in PFAS levels downstream, as indicated by a decrease in flow-weighted mean concentrations and the best-fitting LOADEST model. However, despite the cessation of PFAS process wastewater discharge from the plant in November 2017, and the phase-out of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in North America, both fluoroethers and legacy PFAS continue to reach the river in significant quantities, reflecting groundwater discharge to the river and other continuing inputs. Persistence of PFAS in surface water and drinking water supplies suggests that up to 1.5 million people in the Cape Fear watershed might be exposed.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Humanos , Instalações Industriais e de Manufatura , North Carolina , Poluentes Químicos da Água/análise
3.
Water Sci Technol ; 49(9): 257-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15237633

RESUMO

The adsorption of an odour compound common in drinking water, 2-methylisoborneol (MIB), was studied on two activated carbons in the presence of 13 well-characterised natural organic matter (NOM) solutions. It was found that, although the carbons and the NOM solutions had a wide range of characteristics, the major competitive mechanism was the same in all cases. The low molecular weight NOM compounds were the most competitive, participating in a direct competition with the MIB molecule for adsorption sites. Equivalent background concentration (EBC) calculations indicated a relatively low concentration of directly competing compounds in the NOM. Some evidence of pore restriction was also seen, with microporous carbons most affected by low molecular weight NOM, and mesoporous carbons impacted by the higher molecular weight compounds.


Assuntos
Canfanos/isolamento & purificação , Carbono/química , Odorantes/prevenção & controle , Abastecimento de Água/normas , Adsorção , Canfanos/química , Odorantes/análise , Compostos Orgânicos , Porosidade , Valores de Referência , Paladar
4.
Water Res ; 62: 20-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24934321

RESUMO

Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.


Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Carvão Vegetal/química , Adsorção , Carvão Vegetal/economia , Elementos Químicos , Estudos de Viabilidade , Temperatura Alta , Cinética , Praguicidas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA