Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396752

RESUMO

Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genoma Viral , Myoviridae/genética , Genômica
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139119

RESUMO

Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Humanos , Klebsiella , Klebsiella pneumoniae/metabolismo , Bacteriófagos/fisiologia , Infecções por Klebsiella/microbiologia , Polissacarídeos Bacterianos/metabolismo
3.
Int J Biol Macromol ; 262(Pt 1): 130045, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336317

RESUMO

The K239 type capsular polysaccharide (CPS) isolated from Acinetobacter baumannii isolate MAR19-4435 was studied by sugar analysis, one- and two-dimensional 1H and 13C NMR spectroscopy. K239 consists of branched heptasaccharide repeats (K-units) comprised of five residues of l-rhamnose (l-Rhap), and one residue each of d-glucuronic acid (d-GlcpA) and N-acetyl-d-glucosamine (d-GlcpNAc). The structure of K239 is closely related to that of the A. baumannii K86 CPS type, though the two differ in the 2,3-substitution patterns on the l-Rhap residue that is involved in the linkage between K-units in the CPS polymer. This structural difference was attributed to the presence of a gtr221 glycosyltransferase gene and a wzyKL239 polymerase gene in KL239 that replaces the gtr80 and wzyKL86 genes in the KL86 CPS biosynthesis gene cluster. Comparison of the two structures established the role of a novel WzyKL239 polymerase encoded by KL239 that forms the ß-d-GlcpNAc-(1→2)-l-Rhap linkage between K239 units. A. baumannii MAR19-4435 was found to be non-susceptible to infection by the APK86 bacteriophage, which encodes a depolymerase that specifically cleaves the linkage between K-units in the K86 CPS, indicating that the difference in 2,3-substitution of l-Rhap influences the susceptibility of this isolate to bacteriophage activity.


Assuntos
Acinetobacter baumannii , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Nucleotidiltransferases/genética , Família Multigênica
4.
Carbohydr Res ; 538: 109097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555658

RESUMO

The structure of the K141 type capsular polysaccharide (CPS) produced by Acinetobacter baumannii KZ1106, a clinical isolate recovered from Kazakhstan in 2016, was established by sugar analyses and one- and two-dimensional 1H and 13C NMR spectroscopy. The CPS was shown to consist of branched tetrasaccharide repeating units (K-units) with the following structure: This structure was found to be consistent with the genetic content of the KL141 CPS biosynthesis gene cluster at the chromosomal K locus in the KZ1106 whole genome sequence. Assignment of the encoded enzymes allowed the first sugar of the K unit to be identified, which revealed that the ß-d-GlcpNAc-(1→3)-d-GlcpNAc bond is the linkage between K-units formed by the WzyKL141 polymerase.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Espectroscopia de Ressonância Magnética , Família Multigênica , Açúcares , Polissacarídeos Bacterianos/química
5.
Carbohydr Res ; 535: 109020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150754

RESUMO

K63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome. The glycosyltransferases (Gtrs) and Wzy polymerase encoded by KL63 were assigned to linkages in the linear K63 tetrasaccharide unit and linkage of the K63 units.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Ácidos Siálicos/química , Família Multigênica , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA