Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39224072

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most common birth defect, occurring in roughly 40,000 US births annually. Malnutrition and feeding intolerance (FI) in CHD ranges from 30-42% and is associated with longer hospitalization and increased mortality. Cardiopulmonary bypass (CPB) required for surgical repair of CHD induces a systemic inflammatory response worsening intestinal dysbiosis and inducing intestinal epithelial barrier dysfunction (EBD), possibly contributing to post-operative FI. OBJECTIVE: To determine the relationship of post-operative FI with intestinal Microbiome, short-chain fatty acids (SCFA), and EBD in pediatric CHD after cardiac surgery. METHODS: Prospective study of patients aged 0-15 years undergoing cardiac surgery with CPB. Samples were collected pre-operatively and post-operatively to evaluate the gut microbiome, plasma EBD markers, short-chain fatty acids (SCFA), and plasma cytokines. Clinical data was collected to calculate a FI score and evaluate patient status post-operatively. RESULTS: We enrolled 26 CPB patients and identified FI (n=13). Patients with FI had unique microbial shifts with reduced SCFA-producing organisms, Rothia, Clostridium innocuum, and Intestinimonas. Patients who developed FI had associated elevations in plasma EBD markers, claudin-2 (p<0.05), claudin-3 (p<0.01), and fatty acid binding protein (p<0.01). Patients with FI had reduced plasma and stool SCFAs. Mediation analysis showed the microbiome functional shift was associated with reductions in stool butyric and propionic acid in patients with FI. CONCLUSION: We provide novel evidence that intestinal dysbiosis, markers of EBD, and SCFA depletion are associated with FI. This data will help towards identifying mechanism and therapeutics to improve clinical outcomes following pediatric cardiac surgery.

2.
Front Cell Dev Biol ; 11: 1028519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819105

RESUMO

Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.

3.
Cell Death Discov ; 8(1): 135, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347121

RESUMO

A high-throughput drug screen revealed that veratridine (VTD), a natural plant alkaloid, induces expression of the anti-cancer protein UBXN2A in colon cancer cells. UBXN2A suppresses mortalin, a heat shock protein, with dominant roles in cancer development including epithelial-mesenchymal transition (EMT), cancer cell stemness, drug resistance, and apoptosis. VTD-dependent expression of UBXN2A leads to the deactivation of mortalin in colon cancer cells, making VTD a potential targeted therapy in malignant tumors with high levels of mortalin. VTD was used clinically for the treatment of hypertension in decades past. However, the discovery of newer antihypertensive drugs and concerns over potential neuro- and cardiotoxicity ended the use of VTD for this purpose. The current study aims to determine the safety and efficacy of VTD at doses sufficient to induce UBXN2A expression in a mouse model. A set of flow-cytometry experiments confirmed that VTD induces both early and late apoptosis in a dose-dependent manner. In vivo intraperitoneal (IP) administration of VTD at 0.1 mg/kg every other day (QOD) for 4 weeks effectively induced expression of UBXN2A in the small and large intestines of mice. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays on tissues collected from VTD-treated animals demonstrated VTD concentrations in the low pg/mg range. To address concerns regarding neuro- and cardiotoxicity, a comprehensive set of behavioral and cardiovascular assessments performed on C57BL/6NHsd mice revealed that VTD generates no detectable neurotoxicity or cardiotoxicity in animals receiving 0.1 mg/kg VTD QOD for 30 days. Finally, mouse xenograft experiments in athymic nude mice showed that VTD can suppress tumor growth. The main causes for the failure of experimental oncologic drug candidates are lack of sufficient safety and efficacy. The results achieved in this study support the potential utility of VTD as a safe and efficacious anti-cancer molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA