Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17432, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075077

RESUMO

The ability to identify individual animals can provide valuable insights into the behaviour, life history, survivorship, and demographics of wild populations. Photo-identification (photo-ID) uses unique natural markings to identify individuals and can be effective for scalable and non-invasive research on marine fauna. The successful application of photo-ID requires that chosen distinguishing markings are unique to individuals and persist over time. In this study, we validate the use of dorsal spot patterns for identifying individual blue-spotted ribbontail rays (Taeniura lymma) in conjunction with traditional tagging methods. Spot patterns were unique among T. lymma with 90.3% of individuals correctly identified using I3S photo-matching software from images taken up to 496 days apart. In comparison, traditional physical tagging methods showed a tag loss rate of 27% and a maximum tag retention period of only 356 days. Our findings demonstrate the effectiveness of photo-ID as a tool to monitor populations and better understand the ecology of the blue-spotted ribbontail ray without the need for physical tagging. The validation of photo-ID for this widespread species is important as it enables behavioural and demographic changes to be easily tracked in relation to coastal threats such as human development and habitat degradation.


Assuntos
Rajidae , Animais , Rajidae/fisiologia
2.
ISME J ; 17(12): 2389-2402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907732

RESUMO

Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Dinoflagellida/genética , Recifes de Corais , Simbiose , Oceanos e Mares
3.
Mov Ecol ; 10(1): 22, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484613

RESUMO

BACKGROUND: Reef manta ray (Mobula alfredi) populations along the Northeastern African coastline are poorly studied. Identifying critical habitats for this species is essential for future research and conservation efforts. Dungonab Bay and Mukkawar Island National Park (DMNP), a component of a UNESCO World Heritage Site in Sudan, hosts the largest known M. alfredi aggregation in the Red Sea. METHODS: A total of 19 individuals were tagged using surgically implanted acoustic tags and tracked within DMNP on an array of 15 strategically placed acoustic receivers in addition to two offshore receivers. Two of these acoustically monitored M. alfredi were also equipped with satellite linked archival tags and one individual was fitted with a satellite transmitting tag. Together, these data are used to describe approximately two years of residency and seasonal shifts in habitat use. RESULTS: Tagged individuals were detected within the array on 96% of monitored days and recorded an average residence index of 0.39 across all receivers. Detections were recorded throughout the year, though some individuals were absent from the receiver array for weeks or months at a time, and generalized additive mixed models showed a clear seasonal pattern in presence with the highest probabilities of detection occurring in boreal fall. The models indicated that M. alfredi presence was highly correlated with increasing chlorophyll-a levels and weakly correlated with the full moon. Modeled biological factors, including sex and wingspan, had no influence on animal presence. Despite the high residency suggested by acoustic telemetry, satellite tag data and offshore acoustic detections in Sanganeb Atoll and Suedi Pass recorded individuals moving up to 125 km from the Bay. However, all these individuals were subsequently detected in the Bay, suggesting a strong degree of site fidelity at this location. CONCLUSIONS: The current study adds to growing evidence that M. alfredi are highly resident and site-attached to coastal bays and lagoons but display seasonal shifts in habitat use that are likely driven by resource availability. This information can be used to assist in managing and supporting sustainable ecotourism within the DMNP, part of a recently designated UNESCO World Heritage Site.

4.
Mol Ecol Resour ; 20(3): 620-634, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31782619

RESUMO

Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the "Plastisphere"-the thin layer of life on the surface of PMD-has been technology-limited. Research into microbe-microbe and microbe-substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI-FISH (combinatorial labelling and spectral imaging - fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha-, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell-count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro-metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.


Assuntos
Microbiota/efeitos dos fármacos , Plásticos/efeitos adversos , Bactérias/efeitos dos fármacos , Bactérias/genética , Eucariotos/efeitos dos fármacos , Eucariotos/genética , Hibridização in Situ Fluorescente/métodos , Microbiota/genética , Microscopia/métodos , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA