Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(39): 12081-6, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26324912

RESUMO

Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations.


Assuntos
Culicidae/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Inseticidas/toxicidade , Malária/prevenção & controle , Mosquiteiros , Piretrinas/toxicidade , África , Animais , Disponibilidade Biológica , Culicidae/fisiologia , Nitrilas/toxicidade , Eletricidade Estática , Fatores de Tempo
2.
Malar J ; 16(1): 276, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778169

RESUMO

BACKGROUND: Whilst significant progress has been made in the fight against malaria, vector control continues to rely on just two insecticidal methods, i.e., indoor residual spraying and insecticidal bed nets. House improvement shows great potential to complement these methods and may further reduce indoor mosquito biting and disease transmission. Open eaves serve as important mosquito house entry points and provide a suitable location for intercepting host-seeking anophelines. This study describes semi-field experiments in western Kenya with eave tubes, a household protection product that leverages the natural behaviour of host-seeking malaria mosquitoes. METHODS: Semi-field experiments were conducted in two screen-houses. In both of these a typical western Kenyan house, with mud walls and corrugated iron sheet roofing, was built. Eave tubes with bendiocarb- or deltamethrin-treated eave tube inserts were installed in the houses, and the impact on house entry of local strains of Anopheles gambiae and Anopheles arabiensis was determined. Experiments with open eave tubes (no netting) were conducted as a control and to determine house entry through eave tubes. Insecticidal activity of the inserts treated with insecticide was examined using standard 3-min exposure bioassays. RESULTS: Experiments with open eave tubes showed that a high percentage of released mosquitoes entered the house through tubes during experimental nights. When tubes were fitted with bendiocarb- or deltamethrin-treated inserts, on average 21% [95% CI 18-25%] and 39% [CI 26-51%] of An. gambiae s.s. were recaptured the following morning, respectively. This contrasts with 71% [CI 60-81%] in the treatment with open eaves and 54% [CI 47-61%] in the treatment where inserts were treated with fluorescent dye powder. For An. arabiensis recapture was 21% [CI 14-27%] and 22% [CI 18-25%], respectively, compared to 46% [CI 40-52%] and 25% [CI 15-35%] in the treatments with open tubes and fluorescent dye. CONCLUSIONS: Insecticide-treated eave tubes resulted in significant reductions in recapture rates for both malaria vector species, representing the first and promising results with this novel control tool against Kenyan malaria vectors. Further field evaluation of eave tubes under more realistic field conditions, as well as their comparison with existing approaches in terms of cost-effectiveness and community acceptance, is called for.


Assuntos
Anopheles , Habitação , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Feminino , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Quênia , Nitrilas , Fenilcarbamatos , Piretrinas
3.
Malar J ; 15(1): 447, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586055

RESUMO

BACKGROUND: Presented here are a series of preliminary experiments evaluating "eave tubes"-a technology that combines house screening with a novel method of delivering insecticides for control of malaria mosquitoes. METHODS: Eave tubes were first evaluated with overnight release and recapture of mosquitoes in a screened compartment containing a hut and human sleeper. Recapture numbers were used as a proxy for overnight survival. These trials tested physical characteristics of the eave tubes (height, diameter, angle), and different active ingredients (bendiocarb, LLIN material, fungus). Eave tubes in a hut with closed eaves were also compared to an LLIN protecting a sleeper in a hut with open eaves. Eave tubes were then evaluated in a larger compartment containing a self-replicating mosquito population, vegetation, and multiple houses and cattle sheds. In this "model village", LLINs were introduced first, followed by eave tubes and associated house modifications. RESULTS: Initial testing suggested that tubes placed horizontally and at eave height had the biggest impact on mosquito recapture relative to respective controls. Comparison of active ingredients suggested roughly equivalent effects from bendiocarb, LLIN material, and fungal spores (although speed of kill was slower for fungus). The impact of treated netting on recapture rates ranged from 50 to 70 % reduction relative to controls. In subsequent experiments comparing bendiocarb-treated netting in eave tubes against a standard LLIN, the effect size was smaller but the eave tubes with closed eaves performed at least as well as the LLIN with open eaves. In the model village, introducing LLINs led to an approximate 60 % reduction in larval densities and 85 % reduction in indoor catches of host-seeking mosquitoes relative to pre-intervention values. Installing eave tubes and screening further reduced larval density (93 % relative to pre intervention values) and virtually eliminated indoor host-seeking mosquitoes. When the eave tubes and screening were removed, larval and adult catches recovered to pre-eave tube levels. CONCLUSIONS: These trials suggest that the "eave tube" package can impact overnight survival of host-seeking mosquitoes and can suppress mosquito populations, even in a complex environment. Further testing is now required to evaluate the robustness of these findings and demonstrate impact under field conditions.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Feminino , Voluntários Saudáveis , Humanos , Tanzânia
4.
Malar J ; 15(1): 404, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515306

RESUMO

In spite of massive progress in the control of African malaria since the turn of the century, there is a clear and recognized need for additional tools beyond long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) of insecticides, to progress towards elimination. Moreover, widespread and intensifying insecticide resistance requires alternative control agents and delivery systems to enable development of effective insecticide resistance management strategies. This series of articles presents a novel concept for malaria vector control, the 'eave tube', which may fulfil these important criteria. From its conceptualization to laboratory and semi-field testing, to demonstration of potential for implementation, the stepwise development of this new vector control approach is described. These studies suggest eave tubes (which comprise a novel way of delivering insecticides plus screening to make the house more 'mosquito proof') could be a viable, cost-effective, and acceptable control tool for endophilic and endophagic anophelines, and possibly other (nuisance) mosquitoes. The approach could be applicable in a wide variety of housing in sub-Saharan Africa, and possibly beyond, for vectors that use the eave as their primary house entry point. The results presented in these articles were generated during an EU-FP7 funded project, the mosquito contamination device (MCD) project, which ran between 2012 and 2015. This was a collaborative project undertaken by vector biologists, product developers, modellers, materials scientists, and entrepreneurs from five different countries.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Habitação , Malária/prevenção & controle , Controle de Mosquitos/métodos , África Subsaariana , Animais , Feminino , Humanos
5.
Malar J ; 14: 10, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604997

RESUMO

BACKGROUND: Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods. METHODS: Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10(th) generation and compared to founder wild population. RESULTS: In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population. CONCLUSIONS: Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Variação Genética , Animais , Anopheles/genética , Ecossistema , Feminino , Genótipo , Endogamia , Masculino , Controle de Mosquitos/métodos , Fenótipo , Tanzânia
6.
Malar J ; 12: 24, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23331947

RESUMO

BACKGROUND: The goal of malaria elimination necessitates an improved understanding of any fine-scale geographic variations in transmission risk so that complementary vector control tools can be integrated into current vector control programmes as supplementary measures that are spatially targeted to maximize impact upon residual transmission. This study examines the distribution of host-seeking malaria vectors at households within two villages in rural Tanzania. METHODS: Host-seeking mosquitoes were sampled from 72 randomly selected households in two villages on a monthly basis throughout 2008 using CDC light-traps placed beside occupied nets. Spatial autocorrelation in the dataset was examined using the Moran's I statistic and the location of any clusters was identified using the Getis-Ord Gi* statistic. Statistical associations between the household characteristics and clusters of mosquitoes were assessed using a generalized linear model for each species. RESULTS: For both Anopheles gambiae sensu lato and Anopheles funestus, the density of host-seeking females was spatially autocorrelated, or clustered. For both species, houses with low densities were clustered in the semi-urban village centre while houses with high densities were clustered in the periphery of the villages. Clusters of houses with low or high densities of An. gambiae s.l. were influenced by the number of residents in nearby houses. The occurrence of high-density clusters of An. gambiae s.l. was associated with lower elevations while An. funestus was also associated with higher elevations. Distance from the village centre was also positively correlated with the number of household occupants and having houses constructed with open eaves. CONCLUSION: The results of the current study highlight that complementary vector control tools could be most effectively targeted to the periphery of villages where the households potentially have a higher hazard (mosquito densities) and vulnerability (open eaves and larger households) to malaria infection.


Assuntos
Anopheles/fisiologia , Vetores de Doenças , Malária/epidemiologia , Malária/transmissão , Animais , Comportamento Alimentar , Feminino , Humanos , População Rural , Tanzânia/epidemiologia
7.
Ned Tijdschr Geneeskd ; 1672023 05 23.
Artigo em Holandês | MEDLINE | ID: mdl-37235588

RESUMO

Since 2005, in a growing number of Dutch municipalities, increasing numbers of six exotic mosquito species have been reported. To prevent incursions, the Government has introduced policies that so far have not alleviated the problem. Populations of the Asian bush mosquito in Flevoland, Urk and parts of southern Limburg are now firmly established. The Government considers the risk of disease transmission by these exotic species as 'negligibly small'. Nevertheless, in 2020, seven citizens in Utrecht and Arnhem got infected with the West Nile virus, transmitted by endemic mosquitoes. How concerning are these developments, and should Dutch doctors be prepared to manage exotic diseases in affected patients?We conclude that large-scale operations with a focus on elimination rather than control of exotic mosquitoes are warranted, that policies should be improved and strictly adhered to, and more transparency by the Government is needed to prevent these problems from spiralling out of control.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Países Baixos , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia
8.
Insects ; 14(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754698

RESUMO

Globalization and climate change are key drivers for arboviral and parasitic infectious diseases to expand geographically, posing a growing threat to human health and biodiversity. New non-pesticidal approaches are urgently needed because of increasing insecticide resistance and the negative human and environmental health impacts of synthetic pyrethroids used for fogging. Here, we report the complete and rapid removal of two mosquito species (Aedes aegypti L. and Culex quinquefasciatus Say), both arboviral disease vectors, with odor-baited mosquito traps (at a density of 10 traps/hectare) from a 7.2-hectare island in the Philippines in just 5 months. This rapid elimination of mosquitoes from an island is remarkable and provides further proof that high-density mosquito trapping can play a significant role in mosquito- and vector-borne disease elimination in small islands around the world.

9.
Proc Natl Acad Sci U S A ; 106(41): 17443-7, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805146

RESUMO

The evolution of insecticide resistance in mosquitoes is threatening the effectiveness and sustainability of malaria control programs in various parts of the world. Through their unique mode of action, entomopathogenic fungi provide promising alternatives to chemical control. However, potential interactions between fungal infection and insecticide resistance, such as cross-resistance, have not been investigated. We show that insecticide-resistant Anopheles mosquitoes remain susceptible to infection with the fungus Beauveria bassiana. Four different mosquito strains with high resistance levels against pyrethroids, organochlorines, or carbamates were equally susceptible to B. bassiana infection as their baseline counterparts, showing significantly reduced mosquito survival. Moreover, fungal infection reduced the expression of resistance to the key public health insecticides permethrin and dichlorodiphenyltrichloroethane. Mosquitoes preinfected with B. bassiana or Metarhizium anisopliae showed a significant increase in mortality after insecticide exposure compared with uninfected control mosquitoes. Our results show a high potential utility of fungal biopesticides for complementing existing vector control measures and provide products for use in resistance management strategies.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Resistência a Inseticidas , Malária/prevenção & controle , Permetrina/farmacologia , Animais , Anopheles/genética , DDT/farmacologia , Predisposição Genética para Doença , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Esporos Fúngicos/patogenicidade
10.
Insects ; 13(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135506

RESUMO

Globally, environmental impacts and insecticide resistance are forcing pest control organizations to adopt eco-friendly and insecticide-free alternatives to reduce the risk of mosquito-borne diseases, which affect millions of people, such as dengue, chikungunya or Zika virus. We used, for the first time, a combination of human odor-baited mosquito traps (at 6.0 traps/ha), oviposition traps (7.2 traps/ha) and larval source management (LSM) to practically eliminate populations of the Asian tiger mosquito Aedes albopictus (peak suppression 93.0% (95% CI 91.7-94.4)) and the Southern house mosquito Culex quinquefasciatus (peak suppression 98.3% (95% CI 97.0-99.5)) from a Maldivian island (size: 41.4 ha) within a year and thereafter observed a similar collapse of populations on a second island (size 49.0 ha; trap densities 4.1/ha and 8.2/ha for both trap types, respectively). On a third island (1.6 ha in size), we increased the human odor-baited trap density to 6.3/ha and then to 18.8/ha (combined with LSM but without oviposition traps), after which the Aedes mosquito population was eliminated within 2 months. Such suppression levels eliminate the risk of arboviral disease transmission for local communities and safeguard tourism, a vital economic resource for small island developing states. Terminating intense insecticide use (through fogging) benefits human and environmental health and restores insect biodiversity, coral reefs and marine life in these small and fragile island ecosystems. Moreover, trapping poses a convincing alternative to chemical control and reaches impact levels comparable to contemporary genetic control strategies. This can benefit numerous communities and provide livelihood options in small tropical islands around the world where mosquitoes pose both a nuisance and disease threat.

11.
Proc Biol Sci ; 278(1721): 3142-51, 2011 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21389034

RESUMO

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAIC(c) support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.


Assuntos
Anopheles/fisiologia , Animais , Tamanho Corporal , Feminino , Densidade Demográfica , Dinâmica Populacional , Chuva , Tanzânia
12.
Malar J ; 10: 289, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21975087

RESUMO

BACKGROUND: Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. METHODOLOGY: Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (-700 km away) as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. RESULTS: High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km2 of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (FST = 0.066) was higher than that of the well-known M and S forms of An. gambiae s. s. in West and Central Africa (FST = 0.035), suggesting that these populations are maintained by some level of reproductive isolation. CONCLUSION: It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The impact of the observed An. arabiensis substructure to the prospects for new vector control approaches is discussed.


Assuntos
Anopheles/classificação , Anopheles/genética , Doenças Endêmicas , Variação Genética , Malária/epidemiologia , Animais , Feminino , Genética Populacional , Humanos , Repetições de Microssatélites , Tanzânia/epidemiologia
13.
Malar J ; 10: 24, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21288359

RESUMO

BACKGROUND: Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. METHODS: This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. RESULTS: The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5 × for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control conidia not exposed to the net or field conditions was 79%. CONCLUSIONS: This work shows promise for the use of B. bassiana fungal conidia against insecticide-resistant mosquitoes in the field, but further work is required to examine the role of environmental conditions on fungal virulence and viability with a view to eventually making the fungal conidia delivery system more able to withstand the ambient African climate.


Assuntos
Anopheles/microbiologia , Beauveria/crescimento & desenvolvimento , Beauveria/patogenicidade , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Viabilidade Microbiana , Mosquiteiros/microbiologia , Análise de Sobrevida
14.
J Med Entomol ; 48(2): 305-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21485366

RESUMO

Mosquito resistance to chemical insecticides is considered a serious threat for the sustainable use of contemporary malaria vector control methods. Fungal entomopathogens show potential as alternative biological control agents against (insecticide-resistant) anophelines. This study was designed to test whether the fungus, Beauveria bassiana, could be delivered to mosquitoes on netting materials that might be used in house screens, such as eave curtains. Tests were conducted to determine effects of formulation, application method, netting material, and nature of mosquito contact. Beauveria had a twice as high impact on Anopheles gambiae s.s. longevity when suspended in Shellsol solvent compared with Ondina oil (HR = 2.12, 95% confidence interval = 1.83-2.60, P < 0.001), and was significantly more infective when applied through spraying than dipping. Polyester and cotton bednets were the most effective substrates for mosquito infections, with highest spore viability on cotton nets. Whereas fungal impact was highest in mosquitoes that had passed through large-meshed impregnated nets, overall efficacy was equal between small- and large-meshed nets, with < or = 30-min spore contact killing >90% of mosquitoes within 10 d. Results indicate that the use of fungal spores dissolved in Shellsol and sprayed on small-meshed cotton eave curtain nets would be the most promising option for field implementation. Biological control with fungus-impregnated eave curtains could provide a means to target host-seeking mosquitoes upon house entry, and has potential for use in integrated vector management strategies, in combination with chemical vector control measures, to supplement malaria control in areas with high levels of insecticide resistance.


Assuntos
Anopheles/microbiologia , Beauveria/fisiologia , Insetos Vetores/microbiologia , Malária/transmissão , Controle de Mosquitos/métodos , Animais , Feminino , Interações Hospedeiro-Patógeno , Mosquiteiros/microbiologia , Fatores de Tempo
15.
Parasitol Res ; 108(2): 317-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872014

RESUMO

Physiological characteristics of insects can influence their susceptibility to fungal infection of which age and nutritional status are among the most important. An understanding of host-pathogen interaction with respect to these physiological characteristics of the host is essential if we are to develop fungal formulations capable of reducing malaria transmission under field conditions. Here, two independent bioassays were conducted to study the effect of age and blood-feeding status on fungal infection and survival of Anopheles gambiae s.s. Giles. Mosquitoes were exposed to 2 × 10(10) conidia m(-2) of oil-formulated Metarhizium anisopliae ICIPE-30 and of Beauveria bassiana I93-825, respectively, and their survival was monitored daily. Three age groups of mosquitoes were exposed, 2-4, 5-8, and 9-12 days since emergence. Five groups of different feeding status were exposed: non-blood-fed, 3, 12, 36, and 72 h post-blood feeding. Fungal infection reduced the survival of mosquitoes regardless of their age and blood-feeding status. Although older mosquitoes died relatively earlier than younger ones, age did not tend to affect mosquito susceptibility to fungal infection. Non-blood-fed mosquitoes were more susceptible to fungus infection compared to all categories of blood-fed mosquitoes, except for those exposed to B. bassiana 72 h post-blood feeding. In conclusion, formulations of M. anisopliae and B. bassiana can equally affect mosquitoes of different age classes, with them being relatively more susceptible to fungus infection when non-blood-fed.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Controle Biológico de Vetores/métodos , Envelhecimento/imunologia , Animais , Anopheles/imunologia , Beauveria/imunologia , Suscetibilidade a Doenças/imunologia , Comportamento Alimentar/fisiologia , Feminino , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Longevidade , Metarhizium/imunologia , Esporos Fúngicos/patogenicidade
16.
Malar J ; 9: 27, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089180

RESUMO

BACKGROUND: Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. METHODS: Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. RESULTS: K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. CONCLUSIONS: K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay was suitable for evaluating fungal infectivity and virulence, allowing optimizations of spore dose and exposure time. Use of this standardized application method will help achieve reliable results that are exchangeable between different laboratories.


Assuntos
Culicidae/microbiologia , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/patogenicidade , Animais , Bioensaio
17.
Malar J ; 9: 356, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21143870

RESUMO

BACKGROUND: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. METHODS: A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 × 9.1 × 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. RESULTS: This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. CONCLUSIONS: This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions.


Assuntos
Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Entomologia/métodos , Animais , Ecossistema , Feminino , Masculino , Tanzânia
18.
Malar J ; 9: 22, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20085659

RESUMO

BACKGROUND: Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species and concentration) and environmental effects (exposure duration and food availability) influence larval mortality caused by fungus, was studied. METHODS: Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. RESULTS: Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR) <1) compared to Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR < 1). The effect of increase in fungus concentration on larval mortality was influenced by spore clumping. One day exposure to fungal spores was found to be equally effective as seven days exposure. In different exposure time treatments 0 - 4.9% of the total larvae, exposed to fungus, showed infection at either the pupal or adult stage. Mortality rate increased with increasing larval density and amount of available food. CONCLUSIONS: This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Micoses/veterinária , Controle Biológico de Vetores/métodos , Esporos Fúngicos/patogenicidade , Animais , Larva/microbiologia , Micoses/mortalidade , Análise de Sobrevida
19.
Malar J ; 9: 168, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20553597

RESUMO

BACKGROUND: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species METHODS: Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 +/- 1 degrees C, 80 +/- 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. RESULTS: The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. CONCLUSIONS: The insecticide-resistant mosquito strain was susceptible to both species of fungus indicating that entomopathogenic fungi can be used in resistance management and integrated vector management programmes to target insecticide-resistant mosquitoes. Although fungal viability significantly decreased when applied to the netting, the effectiveness of the fungal treatment at killing mosquitoes did not significantly deteriorate. Field trials over a longer trial period need to be carried out to verify whether polyester netting is a good candidate for operational use, and to see if wild insecticide-resistant mosquitoes are as susceptible to fungal infection as the VKPER strain.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Resistência a Inseticidas , Metarhizium/patogenicidade , Controle de Mosquitos/métodos , Esporos Fúngicos/patogenicidade , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Bioensaio , Suscetibilidade a Doenças/microbiologia , Insetos Vetores/microbiologia , Quênia , Malária/microbiologia , Malária/prevenção & controle , Reação em Cadeia da Polimerase , Piretrinas , Análise de Regressão , Análise de Sobrevida , Temperatura
20.
Malar J ; 9: 246, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20799967

RESUMO

BACKGROUND: Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. METHODS: The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily. RESULTS: All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d. CONCLUSION: Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.


Assuntos
Anopheles/microbiologia , Beauveria/patogenicidade , Metarhizium/patogenicidade , Controle de Mosquitos/métodos , Animais , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA