Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Obes (Lond) ; 46(7): 1311-1318, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383269

RESUMO

INTRODUCTION: Glucagon-like peptide-1 receptor agonists (GLP-1ra) are increasingly used in treating type 2 diabetes and obesity. Exendin-4 (Ex-4), a long acting GLP-1ra, was previously reported to decrease oxidative stress in hepatocytes, adipocytes and skeletal muscle cells in obese nondiabetic fa/fa Zucker rats (ZFR), thereby improving insulin resistance. AIM: We aimed first to identify Ex-4-induced changes in the transcriptome of skeletal muscle cells in ZFR. RESULTS: Ontology analysis of differentially expressed genes (DEGs) in ZFR versus lean animals (LR) showed that the extracellular matrix (ECM) is the first most affected cellular compartment, followed by myofibrils and endoplasmic reticulum (ER). Interestingly, among 15 genes regulated in ZFR versus LR, 14 of them were inversely regulated by Ex-4, as further confirmed by RT-qPCR. Picro-Sirius red histological staining showed that decreased ECM fiber area in ZFR is partially restored by Ex-4. Ontology analysis of the myofibril compartment revealed that decreased muscle contractile function in ZFR is partially restored by Ex-4, as confirmed by Phalloidin histological staining that showed a partial restoration by Ex-4 of altered contractile apparatus in ZFR. Ontology analysis of ER DEGs in ZFR versus LR showed that some of them are related to the AMP-activated protein kinase (AMPK) signaling pathway. Phosphorylated AMPK levels were strongly increased in Ex-4-treated ZFR. CONCLUSION: Altogether, our results suggest that GLP-1ra strongly restructure ECM and reinforce contractile capabilities in ZFR, while optimizing the cellular metabolism through AMPK.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacologia , Incretinas/metabolismo , Incretinas/farmacologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ratos , Ratos Zucker , Transcriptoma/genética
2.
BMC Evol Biol ; 18(1): 18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422028

RESUMO

BACKGROUND: Peroxiredoxins are ubiquitous thiol-dependent peroxidases that represent a major antioxidant defense in both prokaryotic cells and eukaryotic organisms. Among the six vertebrate peroxiredoxin isoforms, peroxiredoxin-5 (PRDX5) appears to be a particular peroxiredoxin, displaying a different catalytic mechanism, as well as a wider substrate specificity and subcellular distribution. In addition, several evolutionary peculiarities, such as loss of subcellular targeting in certain species, have been reported for this enzyme. RESULTS: Western blotting analyses of 2-cys PRDXs (PRDX1-5) failed to identify the PRDX5 isoform in chicken tissue homogenates. Thereafter, via in silico analysis of PRDX5 orthologs, we went on to show that the PRDX5 gene is conserved in all branches of the amniotes clade, with the exception of aves. Further investigation of bird genomic sequences and expressed tag sequences confirmed the disappearance of the gene, though TRMT112, a gene located closely to the 5' extremity of the PRDX5 gene, is conserved. Finally, using in ovo electroporation to overexpress the long and short forms of human PRDX5, we showed that, though the gene is lost in birds, subcellular targeting of human PRDX5 is conserved in the chick. CONCLUSIONS: Further adding to the distinctiveness of this enzyme, this study reports converging evidence supporting loss of PRDX5 in aves. In-depth analysis revealed that this absence is proper to birds as PRDX5 appears to be conserved in non-avian amniotes. Finally, taking advantage of the in ovo electroporation technique, we validate the subcellular targeting of human PRDX5 in the chick embryo and bring forward this gain-of-function model as a potent way to study PRDX5 functions in vivo.


Assuntos
Galinhas/metabolismo , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Sequência Conservada , Cisteína/metabolismo , Eletroporação , Humanos , Peroxidases/genética , Peroxirredoxinas/química , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
3.
Biochemistry ; 53(38): 6113-25, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25184942

RESUMO

Human peroxiredoxin-5 (PRDX5) is a thiol peroxidase that reduces H2O2 10(5) times faster than free cysteine. To assess the influence of two conserved residues on the reactivity of the critical cysteine (C47), we determined the reaction rate constants of PRDX5, wild type (WT), T44V and R127Q with one substrate electrophile (H2O2) and a nonspecific electrophile (monobromobimane). We also studied the corresponding reactions of low molecular weight (LMW) thiolates in order to construct a framework against which we could compare our proteins. To obtain a detailed analysis of the structural and energetic changes involved in the reaction between WT PRDX5 and H2O2, we performed ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations with a QM region including 60 atoms of substrate and active site described by the B3LYP density functional and the 6-31+G(d,p) basis set; the rest of the protein was included in the MM region. Brønsted correlations reveal that the absence of T44 can increase the general nucleophilicity of the C47 but decreases the specific reactivity toward H2O2 by a factor of 10(3). The R127Q mutation causes C47 to behave like a LMW thiolate in the two studied reactions. QM/MM results with WT PRDX5 showed that hydrogen bonds in the active site are the cornerstone of two effects that make catalysis possible: the enhancement of thiolate nucleophilicity upon substrate ingress and the stabilization of the transition state. In both effects, T44 has a central role. These effects occur in a precise temporal sequence that ensures that the selective nucleophilicity of C47 is available only for peroxide substrates.


Assuntos
Cisteína/química , Peroxirredoxinas/metabolismo , Domínio Catalítico , Escherichia coli , Regulação da Expressão Gênica , Modelos Moleculares , Peroxirredoxinas/química , Conformação Proteica
4.
J Neurochem ; 125(3): 473-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23216451

RESUMO

Peroxiredoxin-5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca²âº homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca²âº fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH-SY5Y cells to dissect the role of this enzyme in 1-methyl-4-phenylpyridinium (MPP)⁺-induced cell death. Our data show that mitochondria-dependent apoptosis triggered by MPP⁺, assessed by the measurement of caspase-9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca²âº, Ca²âº-dependent activation of calpains and Bax cleavage. Finally, using Ca²âº channel inhibitors (Nimodipine, Dantrolene and 2-APB), we show that Ca²âº release arises essentially from ER stores through 1,4,5-inositol-trisphosphate receptors (IP3 R). Altogether, our results suggest that the MPP⁺ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca²âº transporters via a crosstalk between mitochondria and ER.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Apoptose/efeitos dos fármacos , Dopaminérgicos/farmacologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Peroxirredoxinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Boro/farmacologia , Cálcio/metabolismo , Calpaína/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Hidroliases/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/patologia , Peroxirredoxinas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transfecção , Tirosina/análogos & derivados , Tirosina/metabolismo
5.
Anal Biochem ; 435(1): 74-82, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23296042

RESUMO

A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pK(a) are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols.


Assuntos
Compostos Bicíclicos com Pontes/química , Compostos de Sulfidrila/química , Cisteína/química , Fluorescência , Glutarredoxinas/química , Humanos , Concentração de Íons de Hidrogênio , Peroxirredoxinas/química , Trypanosoma brucei brucei/enzimologia
6.
Front Cell Dev Biol ; 10: 888873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557958

RESUMO

The involvement of peroxisomes in cellular hydrogen peroxide (H2O2) metabolism has been a central theme since their first biochemical characterization by Christian de Duve in 1965. While the role of H2O2 substantially changed from an exclusively toxic molecule to a signaling messenger, the regulatory role of peroxisomes in these signaling events is still largely underappreciated. This is mainly because the number of known protein targets of peroxisome-derived H2O2 is rather limited and testing of specific targets is predominantly based on knowledge previously gathered in related fields of research. To gain a broader and more systematic insight into the role of peroxisomes in redox signaling, new approaches are urgently needed. In this study, we have combined a previously developed Flp-In T-REx 293 cell system in which peroxisomal H2O2 production can be modulated with a yeast AP-1-like-based sulfenome mining strategy to inventory protein thiol targets of peroxisome-derived H2O2 in different subcellular compartments. By using this approach, we identified more than 400 targets of peroxisome-derived H2O2 in peroxisomes, the cytosol, and mitochondria. We also observed that the sulfenylation kinetics profiles of key targets belonging to different protein families (e.g., peroxiredoxins, annexins, and tubulins) can vary considerably. In addition, we obtained compelling but indirect evidence that peroxisome-derived H2O2 may oxidize at least some of its targets (e.g., transcription factors) through a redox relay mechanism. In conclusion, given that sulfenic acids function as key intermediates in H2O2 signaling, the findings presented in this study provide valuable insight into how peroxisomes may be integrated into the cellular H2O2 signaling network.

7.
Arch Biochem Biophys ; 514(1-2): 1-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767527

RESUMO

Arenicola marina lives in marine environments where hydrogen peroxide concentrations reach micromolar levels. The annelid also forms reactive species through metabolic pathways. Its antioxidant systems include a cytosolic peroxiredoxin, peroxiredoxin 6 (AmPrx6 or AmPRDX6) that shows high homology to the mammalian 1-Cys peroxiredoxin. Previous work confirmed the peroxidase activity of AmPrx6 in the presence of dithiotreitol. Herein, we performed an in vitro kinetic characterization of the recombinant enzyme. AmPrx6 reduced hydrogen peroxide and peroxynitrite with rate constants of 1.1×10(7) and 2×10(6)M(-1)s(-1), respectively, at pH 7.4 and 25°C. Reduction of tert-butyl hydroperoxide was slower. The pK(a) of the peroxidatic thiol of AmPrx6 was determined as 5.1±0.2, indicating that it exists as thiolate, the reactive species, at physiological pH. The reductive part of the catalytic cycle was also explored. Hydrogen sulfide, present in millimolar concentrations in marine sediments where the annelid lives and that is able to reduce the mammalian 1-Cys peroxiredoxin, did not support AmPrx6 peroxidase activity. The enzyme was not reduced by other potential physiological reductants tested. Our data indicate that in this annelid, Prx6 could contribute to peroxide detoxification in the presence of a so far unidentified reducing counterpart.


Assuntos
Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Peroxirredoxina VI/metabolismo , Ácido Peroxinitroso/metabolismo , Poliquetos/enzimologia , Animais , Glutationa/metabolismo , Cinética , Oxirredução , Compostos de Sulfidrila/metabolismo , terc-Butil Hidroperóxido/metabolismo
8.
Nutrients ; 13(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34444911

RESUMO

Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Ácidos Linolênicos/farmacologia , Carcinoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Células HCT116 , Humanos , Neoplasias Hipofaríngeas/tratamento farmacológico , Neoplasias Hipofaríngeas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
9.
Antioxidants (Basel) ; 10(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943005

RESUMO

Human peroxiredoxin-5 (PRDX5) is a unique redox-sensitive protein that plays a dual role in brain ischemia-reperfusion injury. While intracellular PRDX5 has been reported to act as a neuroprotective antioxidative enzyme by scavenging peroxides, once released extracellularly from necrotic brain cells, the protein aggravates neural cell death by inducing expression of proinflammatory cytokines in macrophages through activation of Toll-like receptor (TLR) 2 (TLR2) and 4 (TLR4). Although recent evidence showed that PRDX5 was able to interact directly with TLR4, little is known regarding the role of the cysteine redox state of PRDX5 on its DAMP function. To gain insights into the role of PRDX5 redox-active cysteine residues in the TLR4-dependent proinflammatory activity of the protein, we used a recombinant human PRDX5 in the disulfide (oxidized) form and a mutant version lacking the peroxidatic cysteine, as well as chemically reduced and hyperoxidized PRDX5 proteins. We first analyzed the oxidation state and oligomerization profile by Western blot, mass spectrometry, and SEC-MALS. Using ELISA, we demonstrate that the disulfide bridge between the enzymatic cysteines is required to allow improved TLR4-dependent IL-8 secretion. Moreover, single-molecule force spectroscopy experiments revealed that TLR4 alone is not sufficient to discriminate the different PRDX5 redox forms. Finally, flow cytometry binding assays show that disulfide PRDX5 has a higher propensity to bind to the surface of living TLR4-expressing cells than the mutant protein. Taken together, these results demonstrate the importance of the redox state of PRDX5 cysteine residues on TLR4-induced inflammation.

10.
BMC Genomics ; 11: 634, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21080938

RESUMO

BACKGROUND: Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. RESULTS: We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. CONCLUSIONS: Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.


Assuntos
DNA Complementar/genética , Evolução Molecular , Filogenia , Poliquetos/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Aminoácidos/genética , Animais , Composição de Bases/genética , Teorema de Bayes , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Biblioteca Gênica , Internet , Metais Pesados/toxicidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Poliquetos/efeitos dos fármacos , Estrutura Terciária de Proteína , Ribossomos/genética , Temperatura , Vertebrados/genética
11.
Arch Biochem Biophys ; 491(1-2): 39-45, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19735641

RESUMO

Mitochondria are metabolically highly active cell organelles that are also implicated in reactive oxygen species production and in cell death regulation. Cyclophilin D, the only human mitochondrial isoform of cyclophilins, plays an essential role in the formation of the mitochondrial permeability transition pore leading to cell necrosis. Recently, it has been shown that redox environment modifies structural and functional properties of some plant cyclophilins. Here, it is shown that oxidation of human cyclophilin D influences the conformation of the enzyme but also its activity. Site-directed mutagenized variants of cyclophilin D allowed the identification of cysteine 203 as an important redox-sensitive residue. Moreover, the redox modulation of cyclophilin D was confirmed in human neuroblastoma SH-SY5Y cells exposed to oxidative stress. Altogether, our results suggest that cyclophilin D may play a role as a redox sensor in mitochondria of mammalian cells transmitting information on the redox environment to target proteins.


Assuntos
Ciclofilinas/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Peptidil-Prolil Isomerase F , Ciclofilinas/química , Ciclofilinas/genética , Cisteína , Eletroforese em Gel Bidimensional , Escherichia coli/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Oxirredução , Conformação Proteica , Alinhamento de Sequência , Espectrometria de Fluorescência , Triptofano
12.
Antioxid Redox Signal ; 30(1): 22-39, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28594286

RESUMO

AIMS: Peroxisomes are ubiquitous, single-membrane-bounded organelles that contain considerable amounts of enzymes involved in the production or breakdown of hydrogen peroxide (H2O2), a key signaling molecule in multiple biological processes and disease states. Despite this, the role of this organelle in cross-compartmental H2O2 signaling remains largely unclear, mainly because of the difficulty to modulate peroxisomal H2O2 production in a selective manner. This study aimed at establishing and validating a cellular model suitable to decipher the complex signaling processes associated with peroxisomal H2O2 release. RESULTS: Here, we report the development of a human cell line that can be used to selectively generate H2O2 inside peroxisomes in a time- and dose-controlled manner. In addition, we provide evidence that peroxisome-derived H2O2 can oxidize redox-sensitive cysteine residues in multiple proteins within (e.g., peroxiredoxin-5 [PRDX5]) and outside (e.g., nuclear factor kappa B subunit 1 [NFKB1] and subunit RELA proto-oncogene [RELA], phosphatase and tensin homolog [PTEN], forkhead box O3 [FOXO3], and peroxin 5 [PEX5]) the peroxisomal compartment. Furthermore, we show that the extent of protein oxidation depends on the subcellular location of the target protein and is inversely correlated to catalase activity and cellular glutathione content. Finally, we demonstrate that excessive H2O2 production inside peroxisomes does not induce their selective degradation, at least not under the conditions examined. INNOVATION: This study describes for the first time a powerful model system that can be used to examine the role of peroxisome-derived H2O2 in redox-regulated (patho)physiological processes, a research area in need of further investigation and innovative approaches. CONCLUSION: Our results provide unambiguous evidence that peroxisomes can serve as regulatory hubs in thiol-based signaling networks.


Assuntos
Modelos Biológicos , Peroxissomos/metabolismo , Compostos de Sulfidrila/metabolismo , Células Cultivadas , Proteína Forkhead Box O3/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Oxirredução , Peroxirredoxinas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proto-Oncogene Mas , Fator de Transcrição RelA/metabolismo
13.
Biochim Biophys Acta ; 1769(7-8): 472-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17628720

RESUMO

Peroxiredoxin 5 (PRDX5) is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Its role as antioxidant enzyme has been previously supported in different pathological situations. In this study, we determined the complete human PRDX5 genomic organization and isolated the 5'-flanking region of the gene. Human PRDX5 gene is composed of six exons and five introns similarly to other chordate PRDX5 genes. Several single nucleotide polymorphisms were identified. Six out of them have amino acid substitutions in protein-coding region. Analysis of the 5'-flanking region of human PRDX5 revealed the presence of a TATA-less promoter containing a canonical CpG island and several putative response elements for transcription factors. To analyze the regulatory mechanisms controlling human PRDX5 expression, we characterized the 5'-flanking region by cloning various segments of this region in front of a luciferase reporter sequence. Transfection in HepG2 cells indicate that the 5'-flanking region contains regulatory elements for constitutive expression of human PRDX5. Multiple transcription start sites were also identified by 5'-RACE-PCR in human liver. Moreover, although no corresponding proteins were reported, we present new alternative splicing variants encoded specifically by human PRDX5 gene. The characterization of human PRDX5 gene revealed the complexity of its regulation and a high variability of sequences that might be associated with pathological situations.


Assuntos
Peroxidases/genética , Regiões Promotoras Genéticas , Região 5'-Flanqueadora/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Éxons , Humanos , Íntrons , Dados de Sequência Molecular , Peroxirredoxinas , Sítio de Iniciação de Transcrição
14.
Endocrinology ; 149(1): 424-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17884933

RESUMO

In basal conditions, thyroid epithelial cells produce moderate amounts of reactive oxygen species (ROS) that are physiologically required for thyroid hormone synthesis. They are not necessarily toxic because they are continuously detoxified either in the process of hormone synthesis or by endogenous antioxidant systems. Using a rat model of goiter formation and iodine-induced involution, we found that compared with control thyroids, the oxidative stress, assessed by the detection of 4-hydroxynonenal, was strongly enhanced both in hyperplastic and involuting glands. The level of antioxidant defenses (glutathione peroxidases and peroxiredoxins) was also up-regulated in both groups, although somewhat less in the latter. Of note, increased oxidative stress came along with an inflammatory reaction, but only in involuting glands, suggesting that although antioxidant systems can adequately buffer a heavy load of ROS in goiter, it is not necessarily the case in involuting glands. The effects of 15-deoxy-Delta(12,14)-prostaglandin J2 (15dPGJ2), an endogenous ligand of peroxisome proliferated-activated receptor gamma (PPARgamma) with antiinflammatory properties, were then investigated in involuting glands. This drug strongly reduced both 4-hydroxynonenal staining and the inflammatory reaction, indicating that it can block iodine-induced cytotoxicity. When experiments were carried out with the PPARgamma antagonist, bisphenol A diglycidyl ether, 15dPGJ2-induced effects remained unchanged, suggesting that these effects were not mediated by PPARgamma. In conclusion, thyroid epithelial cells are well adapted to endogenously produced ROS in basal and goitrous conditions. In iodine-induced goiter involution, the increased oxidative stress is accompanied by inflammation that can be blocked by 15dPGJ2 through PPARgamma-independent protective effects.


Assuntos
Bócio/etiologia , Bócio/patologia , Iodo/metabolismo , Estresse Oxidativo/fisiologia , Glândula Tireoide/metabolismo , Glândula Tireoide/fisiologia , Algoritmos , Animais , Antioxidantes/metabolismo , Compostos Benzidrílicos , Carcinógenos/farmacologia , Citoproteção/efeitos dos fármacos , Progressão da Doença , Compostos de Epóxi/farmacologia , Feminino , Glutationa Peroxidase/metabolismo , Bócio/tratamento farmacológico , Bócio/metabolismo , Iodo/farmacologia , Iodo/uso terapêutico , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , PPAR gama/fisiologia , Peroxirredoxinas/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Ratos , Ratos Wistar , Indução de Remissão , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Tireoidite/induzido quimicamente , Tireoidite/patologia
15.
Free Radic Biol Med ; 45(4): 482-93, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18503776

RESUMO

Peroxiredoxins (PRDXs) are a superfamily of thiol-dependent peroxidases found in all phyla. PRDXs are mechanistically divided into three subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs. To reduce peroxides, the N-terminal peroxidatic Cys of PRDXs is first oxidized into sulfenic acid. This intermediate is reduced by forming a disulfide bond either with a resolving Cys of another monomeric entity (typical 2-Cys) or of the same molecule (atypical 2-Cys). In 1-Cys PRDXs, the resolving Cys is missing and the sulfenic acid of the peroxidatic Cys is reduced by a heterologous thiol-containing reductant. In search of a homolog of human 1-Cys PRDX6 in Arenicola marina, an annelid worm living in intertidal sediments, we have cloned and characterized a PRDX exhibiting high sequence homology with its mammalian counterpart. However, A. marina PRDX6 possesses five Cys among which two Cys function as peroxidatic and resolving Cys of typical 2-Cys PRDXs. Thus, A. marina PRDX6 belongs to a transient group exhibiting sequence homologies with mammalian 1-Cys PRDX6 but must be mechanistically classified into typical 2-Cys PRDXs. Moreover, PRDX6 is highly expressed in tissues directly exposed to the external environment, suggesting that this PRDX may be of particular importance for protection against exogenous oxidative attacks.


Assuntos
Anelídeos/enzimologia , Cisteína/metabolismo , Peroxirredoxina VI/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Catálise , Clonagem Molecular , Cisteína/química , Espectrometria de Massas , Dados de Sequência Molecular , Peroxirredoxina VI/química , Peroxirredoxina VI/metabolismo , Homologia de Sequência de Aminoácidos
16.
Arch Biochem Biophys ; 477(1): 98-104, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18489898

RESUMO

Peroxiredoxin 5 (PRDX5) belongs to the PRDX superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. PRDX5 is classified in the atypical 2-Cys subfamily of PRDXs. In this subfamily, the oxidized form of the enzyme is characterized by the presence of an intramolecular disulfide bridge between the peroxidatic and the resolving cysteine residues. We report here three crystal forms in which this intramolecular disulfide bond is indeed observed. The structures are characterized by the expected local unfolding of the peroxidatic loop, but also by the unfolding of the resolving loop. A new type of interface between PRDX molecules is described. The three crystal forms were not oxidized in the same way and the influence of the oxidizing conditions is discussed.


Assuntos
Dissulfetos/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Western Blotting , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica
17.
Neurosci Lett ; 433(3): 219-24, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18262354

RESUMO

Peroxiredoxins (PRDXs) are a family of peroxidases well conserved throughout evolution. Human PRDX3 and PRDX5, two mitochondrial PRDXs, have been implicated in several pathologies associated with oxidative stress. However, the individual role of PRDX3 and PRDX5 in cellular antioxidant defense has never been well established due to their overlapping peroxidatic activities. We investigated the expression and function of mitochondrial PRDXs in human neuroblastoma SH-SY5Y cells. Our results show that PRDX3 and PRDX5 are expressed constitutively in these neuronal cells. To examine further the function of mitochondrial PRDXs, we silenced the expression of PRDX3 and/or PRDX5 using small hairpin RNAs. Our results show that mitochondrial PRDX-depleted cells are more prone to oxidative damages and apoptosis induced by MPP(+), a complex I inhibitor which provides an experimental paradigm of Parkinson's disease.


Assuntos
Citoproteção/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Peroxirredoxinas/metabolismo , Substância Negra/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citoproteção/efeitos dos fármacos , Regulação para Baixo/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Inativação Gênica/fisiologia , Humanos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxirredoxina III , Peroxirredoxinas/efeitos dos fármacos , Peroxirredoxinas/genética , RNA Interferente Pequeno/genética , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia , Células Tumorais Cultivadas
18.
Subcell Biochem ; 44: 345-55, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18084902

RESUMO

Reactive oxygen species have been implicated in gametogenesis and embryo development in animals. As peroxiredoxins are now recognized as important protective antioxidant enzymes as well as modulators of hydrogen peroxide-mediated signaling, we addressed here the putative role of this novel family of peroxidases in gamete maturation and during embryogenesis in mammals and insects.


Assuntos
Embrião de Mamíferos/enzimologia , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/fisiologia , Gametogênese/fisiologia , Proteínas de Insetos/metabolismo , Insetos/enzimologia , Mamíferos/metabolismo , Peroxirredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Insetos/embriologia , Masculino , Mamíferos/embriologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
19.
Subcell Biochem ; 44: 27-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18084888

RESUMO

Peroxiredoxins compose a superfamily of peroxidases ubiquitously found throughout evolution in prokaryotes, archaea and eukaryotes. These enzymes contain a conserved catalytic peroxidatic cysteine (Cp) in the N-terminal region of the protein. The residues surrounding Cp and the catalytic site appear also to be well conserved. Peroxiredoxins can be classified either into three subfamilies according to their catalytic mechanism or into five subfamilies according to sequence homology. Notably, the number of peroxiredoxin genes increased during evolution. In eukaryotes, the higher number of genes coding for peroxiredoxin family members is due to the existence of different isoforms targeted to different subcellular compartments but is probably due also to the acquisition of new functions. Indeed, it has been postulated that the antioxidant protective role of peroxiredoxins, which is particularly critical in prokaryotes, in yeasts and in parasitic eukaryotes, may have evolved to a modulatory role in hydrogen peroxide signaling in plants and animals.


Assuntos
Arabidopsis/genética , Archaea/enzimologia , Evolução Molecular , Peroxirredoxinas/genética , Saccharomyces cerevisiae/genética , Animais , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
20.
Cell Chem Biol ; 25(5): 550-559.e3, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29551349

RESUMO

Inflammation is a pathophysiological response of innate immunity to infection or tissue damage. This response is among others triggered by factors released by damaged or dying cells, termed damage-associated molecular pattern (DAMP) molecules that act as danger signals. DAMPs interact with pattern recognition receptors (PRRs) to contribute to the induction of inflammation. However, how released peroxiredoxins (PRDXs) are able to activate PRRs, such as Toll-like receptors (TLRs), remains elusive. Here, we used force-distance curve-based atomic force microscopy to investigate the molecular mechanisms by which extracellular human PRDX5 can activate a proinflammatory response. Single-molecule experiments demonstrated that PRDX5 binds to purified TLR4 receptors, on macrophage-differentiated THP-1 cells, and on human TLR4-transfected CHO cells. These findings suggest that extracellular PRDX5 can specifically trigger a proinflammatory response. Moreover, our work also revealed that PRDX5 binding induces a cellular mechanoresponse. Collectively, this study provides insights into the role of extracellular PRDX5 in innate immunity.


Assuntos
Microscopia de Força Atômica/métodos , Peroxirredoxinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Mecanotransdução Celular , Simulação de Acoplamento Molecular , Peroxirredoxinas/imunologia , Ligação Proteica , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA