Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 23(12): 1827-1837, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32975023

RESUMO

Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the 'Divergence Problem' in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long-distance effects of anthropogenic emissions on the functioning and productivity of Siberia's taiga. Downwind from the world's most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how 'Arctic Dimming' can explain the circumpolar 'Divergence Problem', and discuss implications on the terrestrial carbon cycle.


Assuntos
Ecossistema , Taiga , Regiões Árticas , Florestas , Árvores
2.
Proc Natl Acad Sci U S A ; 113(3): 662-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729860

RESUMO

Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.


Assuntos
Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Modelos Lineares , Sibéria , Espanha , Especificidade da Espécie , Fatores de Tempo
3.
Sci Total Environ ; 912: 168858, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38030001

RESUMO

Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local- to large-scale carbon, nutrient, and water cycle dynamics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.


Assuntos
Pergelissolo , Taiga , Ecossistema , Secas , Solo , Florestas
4.
Oecologia ; 161(4): 825-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19590897

RESUMO

Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (delta(13)C) and O (delta(18)O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864-2006. A strong decrease in the isotope ratios of O and C (after atmospheric delta(13)C corrections) and tree-ring width was observed for the period 1967-2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929-2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO(2) is taken into account (by applying a recently developed delta(13)C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The delta(18)O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost region.


Assuntos
Ecossistema , Larix/anatomia & histologia , Larix/crescimento & desenvolvimento , Chuva , Madeira/anatomia & histologia , Madeira/química , Isótopos de Carbono , Celulose/análise , Celulose/química , Clima Desértico , Larix/química , Isótopos de Oxigênio , Sibéria , Fatores de Tempo , Água/análise
5.
Sci Total Environ ; 652: 314-319, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366332

RESUMO

Although it has been recognized that rising temperatures and shifts in the hydrological cycle affect the depth of the seasonally thawing upper permafrost stratum, it remains unclear to what extent the frequency and intensity of wildfires, and subsequent changes in vegetation cover, influence the soil active layer on different spatiotemporal scales. Here, we use ring width measurements of the subterranean stem part of 15 larch trees from a Sphagnum bog site in Central Siberia to reconstruct long-term changes in the thickness of the active layer since the last wildfire occurred in 1899. Our approach reveals a three-step feedback loop between above- and belowground ecosystem components. After all vegetation is burned, direct atmospheric heat penetration over the first ~20 years caused thawing of the upper permafrost stratum. The slow recovery of the insulating ground vegetation reverses the process and initiates a gradual decrease of the active layer thickness. Due to the continuous spreading and thickening of the peat layer during the last decades, the upper permafrost horizon has increased by 0.52 cm/year. This study demonstrates the strength of annually resolved and absolutely dated tree-ring series to reconstruct the effects of historical wildfires on the functioning and productivity of boreal forest ecosystems at multi-decadal to centennial time-scale. In so doing, we show how complex interactions of above- and belowground components translate into successive changes in the active permafrost stratum. Our results are particularly relevant for improving long-term estimates of the global carbon cycle that strongly depends on the source and sink behavior of the boreal forest zone.


Assuntos
Pergelissolo , Taiga , Árvores , Incêndios Florestais , Ciclo do Carbono , Ecossistema , Sibéria , Solo , Sphagnopsida , Temperatura
6.
Oecologia ; 147(1): 86-95, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16163553

RESUMO

To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.


Assuntos
Clima , Ecossistema , Árvores/crescimento & desenvolvimento , Biomassa , Agricultura Florestal , Dinâmica Populacional , Estações do Ano , Sibéria , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA