Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38997157

RESUMO

Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.


Assuntos
Encéfalo , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Sinapses/metabolismo , Sinapses/fisiologia , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Adulto , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Atlas como Assunto , Adulto Jovem , Autorradiografia/métodos , Idoso
2.
Psychol Med ; : 1-9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634498

RESUMO

BACKGROUND: There is a significant contribution of genetic factors to the etiology of bipolar disorder (BD). Unaffected first-degree relatives of patients (UR) with BD are at increased risk of developing mental disorders and may manifest cognitive impairments and alterations in brain functional and connective dynamics, akin to their affected relatives. METHODS: In this prospective longitudinal study, resting-state functional connectivity was used to explore stable and progressive markers of vulnerability i.e. abnormalities shared between UR and BD compared to healthy controls (HC) and resilience i.e. features unique to UR compared to HC and BD in full or partial remission (UR n = 72, mean age = 28.0 ± 7.2 years; HC n = 64, mean age = 30.0 ± 9.7 years; BD patients n = 91, mean age = 30.6 ± 7.7 years). Out of these, 34 UR, 48 BD, and 38 HC were investigated again following a mean time of 1.3 ± 0.4 years. RESULTS: At baseline, the UR showed lower connectivity values within the default mode network (DMN), frontoparietal network, and the salience network (SN) compared to HC. This connectivity pattern in UR remained stable over the follow-up period and was not present in BD, suggesting a resilience trait. The UR further demonstrated less negative connectivity between the DMN and SN compared to HC, abnormality that remained stable over time and was also present in BD, suggesting a vulnerability marker. CONCLUSION: Our findings indicate the coexistence of both vulnerability-related abnormalities in resting-state connectivity, as well as adaptive changes possibly promoting resilience to psychopathology in individual at familial risk.

3.
J Sleep Res ; : e14226, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676409

RESUMO

The glymphatic system is centred around brain cerebrospinal fluid flow and is enhanced during sleep, and the synaptic homeostasis hypothesis proposes that sleep acts on brain microstructure by selective synaptic downscaling. While so far primarily studied in animals, we here examine in humans if brain diffusivity and microstructure is related to time of day, sleep quality and cognitive performance. We use diffusion weighted images from 916 young healthy individuals, aged between 22 and 37 years, collected as part of the Human Connectome Project to assess diffusion tensor image analysis along the perivascular space index, white matter fractional anisotropy, intra-neurite volume fraction and extra-neurite mean diffusivity. Next, we examine if these measures are associated with circadian time of acquisition, the Pittsburgh Sleep Quality Index (high scores correspond to low sleep quality) and age-adjusted cognitive function total composite score. Consistent with expectations, we find that diffusion tensor image analysis along the perivascular space index and orbitofrontal grey matter extra-neurite mean diffusivity are negatively and white matter fractional anisotropy positively correlated with circadian time. Further, we find that grey matter intra-neurite volume fraction correlates positively with Pittsburgh Sleep Quality Index, and that this correlation is driven by sleep duration. Finally, we find positive correlations between grey matter intra-neurite volume fraction and cognitive function total composite score, as well as negative interaction effects between cognitive function total composite score and Pittsburgh Sleep Quality Index on grey matter intra-neurite volume fraction. Our findings propose that perivascular flow is under circadian control and that sleep downregulates the intra-neurite volume in healthy adults with positive impact on cognitive function.

4.
Neurocrit Care ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918338

RESUMO

BACKGROUND: To investigate patients with disorders of consciousness (DoC) for residual awareness, guidelines recommend quantifying glucose brain metabolism using positron emission tomography. However, this is not feasible in the intensive care unit (ICU). Cerebral blood flow (CBF) assessed by arterial spin labeling magnetic resonance imaging (ASL-MRI) could serve as a proxy for brain metabolism and reflect consciousness levels in acute DoC. We hypothesized that ASL-MRI would show compromised CBF in coma and unresponsive wakefulness states (UWS) but relatively preserved CBF in minimally conscious states (MCS) or better. METHODS: We consecutively enrolled ICU patients with acute DoC and categorized them as being clinically unresponsive (i.e., coma or UWS [≤ UWS]) or low responsive (i.e., MCS or better [≥ MCS]). ASL-MRI was then acquired on 1.5 T or 3 T. Healthy controls were investigated with both 1.5 T and 3 T ASL-MRI. RESULTS: We obtained 84 ASL-MRI scans from 59 participants, comprising 36 scans from 35 patients (11 women [31.4%]; median age 56 years, range 18-82 years; 24 ≤ UWS patients, 12 ≥ MCS patients; 32 nontraumatic brain injuries) and 48 scans from 24 healthy controls (12 women [50%]; median age 50 years, range 21-77 years). In linear mixed-effects models of whole-brain cortical CBF, patients had 16.2 mL/100 g/min lower CBF than healthy controls (p = 0.0041). However, ASL-MRI was unable to discriminate between ≤ UWS and ≥ MCS patients (whole-brain cortical CBF: p = 0.33; best hemisphere cortical CBF: p = 0.41). Numerical differences of regional CBF in the thalamus, amygdala, and brainstem in the two patient groups were statistically nonsignificant. CONCLUSIONS: CBF measurement in ICU patients using ASL-MRI is feasible but cannot distinguish between the lower and the upper ends of the acute DoC spectrum. We suggest that pilot testing of diagnostic interventions at the extremes of this spectrum is a time-efficient approach in the continued quest to develop DoC neuroimaging markers in the ICU.

5.
Brain Commun ; 6(4): fcae174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045091

RESUMO

Survival rates after out-of-hospital cardiac arrest have improved over the past two decades. Despite this progress, long-term cognitive impairment remains prevalent even in those with early recovery of consciousness after out-of-hospital cardiac arrest; however, little is known about the determinants and underlying mechanisms. We utilized the REcovery after cardiac arrest surVIVAL cohort of out-of-hospital cardiac arrest survivors who fully regained consciousness to correlate cognition measurements with brain network changes using resting-state functional MRI and the Montreal Cognitive Assessment at hospital discharge and a comprehensive neuropsychological assessment at three-month follow-up. About half of out-of-hospital cardiac arrest survivors displayed cognitive impairments at discharge, and in most, cognitive deficits persisted at three-month follow-up, particularly in the executive and visuospatial functions. Compared to healthy controls, out-of-hospital cardiac arrest survivors exhibited increased connectivity between resting-state networks, particularly involving the frontoparietal network. The increased connectivity between the frontoparietal and visual networks was associated with less favourable cognitive outcomes (ß = 14.0, P = 0.01), while higher education seemed to confer some cognitive protection (ß = -2.06, P = 0.03). In sum, the data highlight the importance of subtle cognitive impairment, also in out-of-hospital cardiac arrest survivors who are eligible for home discharge, and the potential of functional MRI to identify alterations in brain networks correlating with cognitive outcomes.

6.
J Psychopharmacol ; 38(4): 362-374, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38519416

RESUMO

BACKGROUND: Persistent cognitive impairment is frequent across bipolar disorder (BD) and major depressive disorder (MDD), highlighting an urgent need for pro-cognitive treatments. AIM: This study investigated effects of erythropoietin (EPO) on cognitive impairment and dorsal prefrontal cortex (dPFC) activity in affective disorders. METHODS: In this randomized, double-blinded, placebo-controlled trial, cognitively impaired patients with remitted BD or MDD received 1 weekly recombinant human EPO (40,000 IU/mL) or saline infusion for a 12-week period. Assessments were conducted at baseline, after 2 weeks of treatment (week 3), immediately after treatment (week 13) and at 6-months follow-up. Participants underwent functional MRI during performance on a n-back working memory (WM) task at baseline and week 3, and for a subgroup 6 weeks post-treatment (week 18). The primary outcome was a cognitive composite score at week 13, whereas secondary outcomes comprised sustained attention and functioning. WM-related dPFC activity was a tertiary outcome. RESULTS: Data were analysed for 101 of the 103 included patients (EPO, n = 58; saline, n = 43). There were no effects of EPO over saline on any cognitive or functional outcomes or on WM-related dPFC activity. CONCLUSIONS: The absence of treatment-related changes in cognition and neural activity was unexpected and contrasts with multiple previous preclinical and clinical studies. It is possible that the lack of effects resulted from a recent change in the manufacturing process for EPO. Nevertheless, the findings support the validity of dPFC target engagement as a biomarker model for pro-cognitive effects, according to which treatments that do not improve cognition should not modulate dPFC activity. TRIAL REGISTRATIONS: EudraCT no.: 2016-004023-24; ClinicalTrials.gov identifier: NCT03315897.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Eritropoetina , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/psicologia , Transtornos do Humor/tratamento farmacológico , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Córtex Pré-Frontal , Resultado do Tratamento , Método Duplo-Cego
7.
Sci Rep ; 14(1): 3149, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326352

RESUMO

Short-term intake of selective serotonin reuptake inhibitors (SSRIs) modulates threat-related amygdala responses in healthy individuals. However, how SSRI intake over a clinically relevant time period modulates threat-related amygdala responses is less clear. In a semi-randomised, double-blind, placebo-controlled study of 64 healthy individuals (SSRI n = 32, placebo n = 32), we examined the effect of 3-5 weeks of SSRI escitalopram (20 mg daily) on brain response to angry, fearful and neutral faces using BOLD fMRI. Data was analysed using a whole-brain region-wise approach extracting standardised effects (i.e., Cohen's D). The study was conducted at the Copenhagen University Hospital. A priori, we hypothesised that SSRI would attenuate amygdala responses to angry and fearful faces but not to neutral ones. Whether SSRI modulates correlations between amygdala responses to emotional faces and negative mood states was also explored. Compared to placebo, 3-5 weeks of SSRI intake did not significantly affect the amygdala response to angry, fearful, or neutral faces (|Cohen's D|< 0.2, PFWER = 1). Whole-brain, region-wise analyses revealed significant differences in frontal (|Cohen's D|< 0.6, PFWER < .01) and occipital regions (|Cohen's D|< 0.5, PFWER < .01). SSRI did not modulate correlations between amygdala responses to emotional faces and negative mood states. Our findings indicate that a 3-5 week SSRI intake impacts cortical responses to emotional stimuli, an effect possibly involved in SSRI's therapeutic efficacy.Trial registration Clinical Trials NCT04239339.


Assuntos
Citalopram , Escitalopram , Humanos , Citalopram/uso terapêutico , Emoções/fisiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Método Duplo-Cego , Expressão Facial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA