Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(9): 3417-3429, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28151657

RESUMO

A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.


Assuntos
Inibinas/antagonistas & inibidores , Termodinâmica , Triazóis/farmacologia , Cristalografia por Raios X , Humanos , Inibinas/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Fatores de Tempo , Triazóis/química
2.
J Org Chem ; 82(7): 3844-3854, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273423

RESUMO

2-Alkyl-1,2-benzisoselenazol-3(2H)-ones, represented by ebselen (1a), are being studied intensively for a range of medicinal applications. We describe both a new thermal and photoinduced copper-mediated cross-coupling between potassium selenocyanate (KSeCN) and N-substituted ortho-halobenzamides to form 2-alkyl-1,2-benzisoselenazol-3(2H)-ones containing a C-Se-N bond. The copper ligand (1,10-phenanthroline) facilitates C-Se bond formation during heating via a mechanism that likely involves atom transfer (AT), whereas, in the absence of ligand, photoinduced activation likely proceeds through a single electron transfer (SET) mechanism. A library of 15 2-alkyl-1,2-benzisoselenazol-3(2H)-ones was prepared. One member of the library was azide-containing derivative 1j that was competent to undergo a strain-promoted azide-alkyne cycloaddition. The library was evaluated for inhibition of Mycobacterium tuberculosis (Mtb) growth and Mtb Antigen 85C (Mtb Ag85C) activity. Compound 1f was most potent with a minimal inhibitory concentration (MIC) of 12.5 µg/mL and an Mtb Ag85C apparent IC50 of 8.8 µM.


Assuntos
Antituberculosos/farmacologia , Cobre/química , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos de Selênio/farmacologia , Antituberculosos/química , Carbono/química , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Compostos de Selênio/química
3.
Org Biomol Chem ; 14(25): 6119-6133, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27251120

RESUMO

Tuberculosis (TB) and its drug resistant forms kills more people than any other infectious disease. This fact emphasizes the need to identify new drugs to treat TB. 2-Aminothiophenes (2AT) have been reported to inhibit Pks13, a validated anti-TB drug target. We synthesized a library of 42 2AT compounds. Among these, compound 33 showed remarkable potency against Mycobacterium tuberculosis (Mtb) H37RV (MIC = 0.23 µM) and showed an impressive potency (MIC = 0.20-0.44 µM) against Mtb strains resistant to isoniazid, rifampicin and fluoroquinolones. The site of action for the compound 33 is presumed to be Pks13 or an earlier enzyme in the mycolic acid biosynthetic pathway. This inference is based on structural similarity of the compound 33 with known Pks13 inhibitors, which is corroborated by mycolic acid biosynthesis studies showing that the compound strongly inhibits the biosynthesis of all forms of mycolic acid in Mtb. In summary, these studies suggest 33 represents a promising anti-TB lead that exhibits activity well below toxicity to human monocytic cells.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tiofenos/síntese química , Tiofenos/farmacologia , Antituberculosos/química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Tiofenos/química
4.
J Biol Chem ; 289(23): 15987-6005, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24739388

RESUMO

Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piridonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Feminino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Estrutura Molecular , Reação em Cadeia da Polimerase , Piridonas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
5.
J Antimicrob Chemother ; 70(11): 3070-3, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26245639

RESUMO

OBJECTIVES: The increasing number of clinical strains resistant to one or more of the front-line TB drugs complicates the management of this disease. To develop next-generation benzimidazole-based FtsZ inhibitors with improved efficacy, we employed iterative optimization strategies based on whole bacteria potency, bactericidal activity, plasma and metabolic stability and in vivo efficacy studies. METHODS: Candidate benzimidazoles were evaluated for potency against Mycobacterium tuberculosis H37Rv and select clinical strains, toxicity against Vero cells and compound stability in plasma and liver microsomes. The efficacy of lead compounds was assessed in the acute murine M. tuberculosis infection model via intraperitoneal and oral routes. RESULTS: MICs of SB-P17G-A33, SB-P17G-A38 and SB-P17G-A42 for M. tuberculosis H37Rv and select clinical strains were 0.18-0.39 mg/L. SB-P17G-A38 and SB-P17G-A42 delivered at 50 mg/kg twice daily intraperitoneally or orally demonstrated efficacy in reducing the bacterial load by 5.7-6.3 log10 cfu in the lungs and 3.9-5.0 log10 cfu in the spleen. SB-P17G-A33 delivered at 50 mg/kg twice daily intraperitoneally or orally also reduced the bacterial load by 1.7-2.1 log10 cfu in the lungs and 2.5-3.4 log10 cfu in the spleen. CONCLUSIONS: Next-generation benzimidazoles with excellent potency and efficacy against M. tuberculosis have been developed. This is the first report on benzimidazole-based FtsZ inhibitors showing an equivalent level of efficacy to isoniazid in an acute murine M. tuberculosis infection model.


Assuntos
Antituberculosos/administração & dosagem , Benzimidazóis/administração & dosagem , Isoniazida/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Administração Oral , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzimidazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteínas do Citoesqueleto/antagonistas & inibidores , Modelos Animais de Doenças , Estabilidade de Medicamentos , Inativação Metabólica , Injeções Intraperitoneais , Isoniazida/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Resultado do Tratamento , Células Vero
6.
Antimicrob Agents Chemother ; 58(3): 1646-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379198

RESUMO

Identification of a novel class of anti-Burkholderia compounds is key in addressing antimicrobial resistance to current therapies as well as naturally occurring resistance. The FabI enoyl-ACP reductase in Burkholderia is an underexploited target that presents an opportunity for development of a new class of inhibitors. A library of substituted diphenyl ethers was used to identify FabI1-specific inhibitors for assessment in Burkholderia pseudomallei ex vivo and murine efficacy models. Active FabI1 inhibitors were identified in a two-stage format consisting of percent inhibition screening and MIC determination by the broth microdilution method. Each compound was evaluated against the B. pseudomallei 1026b (efflux-proficient) and Bp400 (efflux-compromised) strains. In vitro screening identified candidate substituted diphenyl ethers that exhibited MICs of less than 1 µg/ml, and enzyme kinetic assays were used to assess potency and specificity against the FabI1 enzyme. These compounds demonstrated activity in a Burkholderia ex vivo efficacy model, and two demonstrated efficacy in an acute B. pseudomallei mouse infection model. This work establishes substituted diphenyl ethers as a suitable platform for development of novel anti-Burkholderia compounds that can be used for treatment of melioidosis.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Animais , Burkholderia pseudomallei/enzimologia , Modelos Animais de Doenças , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Feminino , Melioidose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Células Vero/efeitos dos fármacos
7.
Bioorg Med Chem ; 22(9): 2602-12, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726304

RESUMO

Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 µg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63-12.5 µg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 µM.


Assuntos
Antituberculosos/síntese química , Proteínas Arqueais/metabolismo , Benzimidazóis/química , Desenho de Fármacos , Animais , Antituberculosos/química , Antituberculosos/toxicidade , Proteínas Arqueais/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade , Células Vero
8.
Bioorg Med Chem ; 21(11): 3318-26, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623254

RESUMO

Francisella tularensis is a highly virulent pathogenic bacterium. In order to identify novel potential antibacterial agents against F. tularensis, libraries of trisubstituted benzimidazoles were screened against F. tularensis LVS strain. In a preliminary screening assay, remarkably, 23 of 2,5,6- and 2,5,7-trisubstituted benzimidazoles showed excellent activity exhibiting greater than 90% growth inhibition at 1 µg/mL. Among those hits, 21 compounds showed MIC90 values in the range of 0.35-48.6 µg/mL after accurate MIC determination. In ex vivo efficacy assays, four of these compounds exhibited 2-3log reduction in colony forming units (CFU) per mL at concentrations of 10 and 50 µg/mL.


Assuntos
Antibacterianos/farmacologia , Benzimidazóis/farmacologia , Francisella tularensis/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antibacterianos/síntese química , Benzimidazóis/síntese química , Linhagem Celular , Francisella tularensis/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
9.
RSC Med Chem ; 12(1): 78-94, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046600

RESUMO

Filamenting temperature sensitive protein Z (FtsZ) is an essential bacterial cell division protein and a promising target for the development of new antibacterial therapeutics. As a part of our ongoing SAR studies on 2,5,6-trisubstituted benzimidazoles as antitubercular agents targeting Mtb-FtsZ, a new library of compounds with modifications at the 2 position was designed, synthesized and evaluated for their activity against Mtb-H37Rv. This new library of trisubstituted benzimidazoles exhibited MIC values in the range of 0.004-50 µg mL-1. Compounds 6b, 6c, 20f and 20g showed excellent growth inhibitory activities ranging from 0.004-0.08 µg mL-1. This SAR study has led to the discovery of a remarkably potent compound 20g (MIC 0.0039 µg mL-1; normalized MIC 0.015 µg mL-1). Our 3DQSAR model predicted 20g as the most potent compound in the library.

10.
Bioorg Med Chem Lett ; 20(21): 6306-9, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20850304

RESUMO

Menaquinone is an essential component of the electron transport chain in many pathogens and consequently enzymes in the menaquinone biosynthesis pathway are potential drug targets for the development of novel antibacterial agents. In order to identify leads that target MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from Mycobacterium tuberculosis, a high-throughput screen was performed. Several 1,4-benzoxazines were identified in this screen and subsequent SAR studies resulted in the discovery of compounds with excellent antibacterial activity against M. tuberculosis H37Rv with MIC values as low as 0.6µg/ml. The 1,4-benzoxazine scaffold is thus a promising foundation for the development of antitubercular agents.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Benzoxazinas/síntese química , Benzoxazinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxo-Ácido-Liases/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
11.
Mol Plant Microbe Interact ; 22(7): 809-19, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19522563

RESUMO

Molecular biological studies on Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot of potato, have gained greater feasibility due to the recent availability of whole genomic sequences and genetic tools for related taxa. Here, we describe the first report of construction and characterization of a transposon (Tn) mutant library of C. michiganensis subsp. sepedonicus sp. strain R10. Since virulence of R10 in potato has been shown previously to be associated with elicitation of a nonhost hypersensitive response (HR), the mutant library was screened initially for loss of HR in tobacco. The screen identified two HR-negative mutants containing Tn insertions within the same gene, CMS2989 (chp-7), although at distinct locations. chp-7 is one of 11 pat-1 homologs in C. michiganensis subsp. sepedonicus. HR-negative mutants of R10 multiplied to the same extent as wild type in planta but were less virulent in potato. Complementation with chp-7 restored virulence as well as the HR phenotype. Together, these findings demonstrate a role for chp-7 in C. michiganensis subsp. sepedonicus-plant interactions.


Assuntos
Actinomycetales/patogenicidade , Proteínas de Bactérias/fisiologia , Serina Endopeptidases/fisiologia , Actinomycetales/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Southern Blotting , Biblioteca Gênica , Teste de Complementação Genética , Mutagênese Insercional , Mutação , Reação em Cadeia da Polimerase , RNA Mensageiro/química , Serina Endopeptidases/genética , Solanum tuberosum/microbiologia , Nicotiana/microbiologia , Virulência/genética
12.
J Antimicrob Chemother ; 64(5): 1052-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734171

RESUMO

OBJECTIVES: The National Institute of Allergy and Infectious Disease classifies Francisella tularensis as a Category A priority pathogen. Despite the availability of drugs for treating tularaemia, the mortality in naturally acquired cases can still approach 30%. In addition, the usefulness of existing drugs for treatment in response to exposure or for prophylaxis is limited because of toxicity and delivery concerns. The aim of this study was to assess the efficacy of the lead alkyl-substituted diphenyl ether, SBPT04, in the F. tularensis murine model of infection. METHODS: SBPT04 was delivered by intraperitoneal (ip) and oral (po) routes, and mice were monitored for morbidity, mortality and relapse of disease. Pharmacokinetic studies were performed to evaluate bioavailability. Phase I and Phase II metabolism of SBPT04 was assessed in mouse and human microsomes. RESULTS: SBPT04, a potent inhibitor of the enoyl-ACP reductase enzyme ftuFabI, has efficacy against F. tularensis in the murine model of infection when delivered by both ip and po routes. SBPT04 delivered ip cleared infection by day 4 of treatment, and SBPT04 delivered po resulted in delayed dissemination. Importantly, SBPT04 delivered ip or po demonstrated efficacy with no signs of relapse of disease. Pharmacokinetic studies show increased serum concentrations following ip delivery compared with po delivery, which correlates with the observed survival rate of 100%. CONCLUSIONS: In addition to being a potent lead, this work substantiates substituted diphenyl ethers as a platform for the development of novel broad-spectrum chemotherapeutics to other bacterial agents in addition to F. tularensis.


Assuntos
Antibacterianos/uso terapêutico , Francisella tularensis/efeitos dos fármacos , Éteres Fenílicos/uso terapêutico , Tularemia/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Humanos , Concentração Inibidora 50 , Pulmão/microbiologia , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Microssomos/metabolismo , Modelos Moleculares , Estrutura Molecular , Éteres Fenílicos/química , Éteres Fenílicos/farmacocinética , Éteres Fenílicos/farmacologia , Plasma/química , Baço/microbiologia , Análise de Sobrevida , Tularemia/patologia , Tularemia/fisiopatologia
13.
Bioorg Med Chem ; 17(10): 3588-94, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19386501

RESUMO

Direct anti-tuberculosis screening of commercially available compound libraries identified a novel piperidinol with interesting anti-tuberculosis activity and drug like characteristics. To generate a structure activity relationship about this hit a 22 member optimization library was generated using parallel synthesis. Products of this library 1-((R)-3-(4-chlorophenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl)piperidin-4-ol and 1-((S)-3-(4-(trifluoromethyl) phenoxy)-2-hydroxypropyl)-4-(4-chloro-3-(trifluoromethyl) phenyl) piperidin-4-ol demonstrated good anti-tuberculosis activity. Unfortunately, side effects were observed upon in vivo anti-tuberculosis testing of these compounds precluding their further advancement, which may be in part due to the secondary pharmacology associated with the aryl piperidinol core.


Assuntos
Antituberculosos/síntese química , Antituberculosos/toxicidade , Piperidinas/síntese química , Piperidinas/toxicidade , Animais , Antituberculosos/química , Chlorocebus aethiops , Descoberta de Drogas , Piperidinas/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Células Vero
14.
Bioorg Med Chem Lett ; 18(10): 3029-33, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18457948

RESUMO

Previous structure-based design studies resulted in the discovery of alkyl substituted diphenyl ether inhibitors of InhA, the enoyl reductase from Mycobacterium tuberculosis. Compounds such as 5-hexyl-2-phenoxyphenol 19 are nM inhibitors of InhA and inhibit the growth of both sensitive and isoniazid-resistant strains of Mycobacterium tuberculosis with MIC(90) values of 1-2 microg/mL. However, despite their promising in vitro activity, these compounds have ClogP values of over 5. In efforts to reduce the lipophilicity of the compounds, and potentially enhance compound bioavailability, a series of B ring analogues of 19 were synthesized that contained either heterocylic nitrogen rings or phenyl rings having amino, nitro, amide, or piperazine functionalities. Compounds 3c, 3e, and 14a show comparable MIC(90) values to that of 19, but have improved ClogP values.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Éteres Fenílicos/química , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Disponibilidade Biológica , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Éteres Fenílicos/síntese química , Piperazinas/química , Piperazinas/farmacologia , Relação Estrutura-Atividade
15.
Tuberculosis (Edinb) ; 101: 8-14, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27865404

RESUMO

Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery. Lead diphenyl ethers were formulated in co-solvent and Self-Dispersing Lipid Formulations (SDLFs) and evaluated in a rapid murine Mtb infection model that assesses dissemination to and bacterial burden in the spleen. In vitro synergy studies were performed with the lead diphenyl ether compounds, SB-PT070 and SB-PT091, and rifampin (RIF), which demonstrated an additive effect, and that guided the in vivo studies. Combinatorial therapy in vivo studies with these compounds delivered in our Self-Micro Emulsifying Drug Delivery System (SMEDDS) resulted in an additional 1.4 log10 CFU reduction in the spleen of animals co-treated with SB-PT091 and RIF and an additional 1.7 log10 reduction in the spleen with animals treated with both SB-PT070 and RIF.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Éteres Fenílicos/farmacologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/sangue , Modelos Animais de Doenças , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas/métodos , Sinergismo Farmacológico , Quimioterapia Combinada , Emulsificantes , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana/métodos , Éteres Fenílicos/sangue , Solubilidade , Baço/microbiologia , Tuberculose/sangue , Tuberculose/microbiologia
16.
J Med Chem ; 59(11): 5377-90, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27187871

RESUMO

ß-Ketoacyl-ACP synthases (KAS) are key enzymes involved in the type II bacterial fatty acid biosynthesis (FASII) pathway and are putative targets for antibacterial discovery. Several natural product KAS inhibitors have previously been reported, including thiolactomycin (TLM), which is produced by Nocardia spp. Here we describe the synthesis and characterization of optically pure 5R-thiolactomycin (TLM) analogues that show improved whole cell activity against bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA) and priority pathogens such as Francisella tularensis and Burkholderia pseudomallei. In addition, we identify TLM analogues with in vivo efficacy against MRSA and Klebsiella pneumoniae in animal models of infection.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Animais , Antibacterianos/síntese química , Antibacterianos/química , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/enzimologia , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/enzimologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Camundongos , Testes de Sensibilidade Microbiana , Conformação Molecular , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tiofenos/farmacologia , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/enzimologia
17.
Tuberculosis (Edinb) ; 94(3): 271-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24746463

RESUMO

Structure based drug design was used to develop a compound library of novel 2,5,6- and 2,5,7-trisubstituted benzimidazoles. Three structural analogs, SB-P1G10, SB-P8B2 and SB-P3G2 were selected from this library for advanced study. In vitro studies revealed that SB-P8B2 and SB-P3G2 had sigmoidal kill-curves while in contrast SB-P1G10 showed a narrow zonal susceptibility. The in vitro studies also demonstrated that exposure to SB-P8B2 or SB-P3G2 was bactericidal, while SB-P1G10 treatment never resulted in complete killing. The dose curves for the three compounds against clinical isolates were comparable to their respective dose curves in the laboratory strain of Mycobacterium tuberculosis. SB-P8B2 and SB-P3G2 exhibited antibacterial activity against non-replicating bacilli under low oxygen conditions. SB-P3G2 and SB-P1G10 were assessed in acute short-term animal models of tuberculosis, which showed that SB-P3G2 demonstrated activity against M. tuberculosis. Together, these studies reveal an in vitro-in vivo relationship of the 2,5,6-trisubstituted benzimidazoles that serves as a criterion for advancing this class of cell division inhibitors into more resource intensive in vivo efficacy models such as the long-term murine model of tuberculosis and Pre-IND PK/PD studies. Specifically, these studies are the first demonstration of efficacy and an in vitro-in vivo activity relationship for 2,5,6-trisubstituted benzimidazoles. The in vivo activity presented in this manuscript substantiates this class of cell division inhibitors as having potency and efficacy against M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxigênio , Tuberculose/patologia
18.
PLoS One ; 9(4): e93953, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736743

RESUMO

Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73 ± 0.24 Log10 CFU and 2.68 ± Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP) twice daily (bid). The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy.


Assuntos
Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/administração & dosagem , Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzimidazóis/administração & dosagem , Benzimidazóis/química , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Rifamicinas/administração & dosagem , Rifamicinas/farmacologia , Resultado do Tratamento , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
19.
ChemMedChem ; 9(4): 776-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24616444

RESUMO

The diaryl ethers are a novel class of antituberculosis drug candidates that inhibit InhA, the enoyl-ACP reductase involved in the fatty acid biosynthesis (FASII) pathway, and have antibacterial activity against both drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. In the present work, we demonstrate that two time-dependent B-ring modified diaryl ether InhA inhibitors have antibacterial activity in a mouse model of TB infection when delivered by intraperitoneal injection. We propose that the efficacy of these compounds is related to their residence time on the enzyme, and to identify structural features that modulate drug-target residence time in this system, we have explored the inhibition of InhA by a series of B-ring modified analogues. Seven ortho-substituted compounds were found to be time-dependent inhibitors of InhA, where the slow step leading to the final enzyme-inhibitor complex (EI*) is thought to correlate with closure and ordering of the InhA substrate binding loop. A detailed mechanistic understanding of the molecular basis for residence time in this system will facilitate the development of InhA inhibitors with improved in vivo activity.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres/farmacologia , Inibinas/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Éteres/síntese química , Éteres/química , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo
20.
J Med Chem ; 56(23): 9756-70, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24266862

RESUMO

FtsZ, an essential protein for bacterial cell division, is a highly promising therapeutic target, especially for the discovery and development of new-generation anti-TB agents. Following up the identification of two lead 2,5,6-trisubstituted benzimidazoles, 1 and 2, targeting Mtb-FtsZ in our previous study, an extensive SAR study for optimization of these lead compounds was performed through systematic modification of the 5 and 6 positions. This study has successfully led to the discovery of a highly potent advanced lead 5f (MIC = 0.06 µg/mL) and several other compounds with comparable potencies. These advanced lead compounds possess a dimethylamino group at the 6 position. The functional groups at the 5 position exhibit substantial effects on the antibacterial activity as well. In vitro experiments such as the FtsZ polymerization inhibitory assay and TEM analysis of Mtb-FtsZ treated with 5f and others indicate that Mtb-FtsZ is the molecular target for their antibacterial activity.


Assuntos
Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Benzimidazóis/síntese química , Proteínas do Citoesqueleto/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Benzimidazóis/farmacologia , Proteínas do Citoesqueleto/efeitos dos fármacos , Concentração Inibidora 50 , Microscopia Eletrônica de Transmissão , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA