Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cartilage ; 11(4): 521-531, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30221989

RESUMO

OBJECTIVE: Chondrospheres represent a variant of tissue spheroids biofabricated from chondrocytes. They are already being used in clinical trials for cartilage repair; however, their biomechanical properties have not been systematically investigated yet. The aim of our study was to characterize chondrospheres in long-term in vitro culture conditions for morphometric changes, biomechanical integrity, and their fusion and spreading kinetics. RESULTS: It has been demonstrated that the increase in chondrospheres secant modulus of elasticity is strongly associated with the synthesis and accumulation of extracellular matrix. Additionally, significant interplay has been found between biomechanical properties of tissue spheroids and their fusion kinetics in contrast to their spreading kinetics. CONCLUSIONS: Extracellular matrix is one of the main structural determinants of chondrospheres biomechanical properties during chondrogenic maturation in vitro. The estimation of tissue spheroids' physical behavior in vitro prior to operative treatment can be used to predict and potentially control fusogenic self-assembly process after implantation in vivo.


Assuntos
Condrócitos/citologia , Condrogênese/fisiologia , Matriz Extracelular/fisiologia , Esferoides Celulares/fisiologia , Engenharia Tecidual , Fenômenos Biomecânicos , Células Cultivadas , Humanos , Técnicas In Vitro
2.
Biofabrication ; 10(3): 034104, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29848793

RESUMO

Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering.


Assuntos
Técnicas de Cultura de Células/instrumentação , Campos Magnéticos , Engenharia Tecidual/instrumentação , Animais , Condrócitos/citologia , Simulação por Computador , Desenho de Equipamento , Esferoides Celulares/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA