Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Gut ; 70(10): 1954-1964, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33208407

RESUMO

OBJECTIVE: Lipotoxic hepatocyte injury is a primary event in non-alcoholic steatohepatitis (NASH), but the mechanisms of lipotoxicity are not fully defined. Sphingolipids and free cholesterol (FC) mediate hepatocyte injury, but their link in NASH has not been explored. We examined the role of free cholesterol and sphingomyelin synthases (SMSs) that generate sphingomyelin (SM) and diacylglycerol (DAG) in hepatocyte pyroptosis, a specific form of programmed cell death associated with inflammasome activation, and NASH. DESIGN: Wild-type C57BL/6J mice were fed a high fat and high cholesterol diet (HFHCD) to induce NASH. Hepatic SMS1 and SMS2 expressions were examined in various mouse models including HFHCD-fed mice and patients with NASH. Pyroptosis was estimated by the generation of the gasdermin-D N-terminal fragment. NASH susceptibility and pyroptosis were examined following knockdown of SMS1, protein kinase Cδ (PKCδ), or the NLR family CARD domain-containing protein 4 (NLRC4). RESULTS: HFHCD increased the hepatic levels of SM and DAG while decreasing the level of phosphatidylcholine. Hepatic expression of Sms1 but not Sms2 was higher in mouse models and patients with NASH. FC in hepatocytes induced Sms1 expression, and Sms1 knockdown prevented HFHCD-induced NASH. DAG produced by SMS1 activated PKCδ and NLRC4 inflammasome to induce hepatocyte pyroptosis. Depletion of Nlrc4 prevented hepatocyte pyroptosis and the development of NASH. Conditioned media from pyroptotic hepatocytes activated the NOD-like receptor family pyrin domain containing 3 inflammasome (NLRP3) in Kupffer cells, but Nlrp3 knockout mice were not protected against HFHCD-induced hepatocyte pyroptosis. CONCLUSION: SMS1 mediates hepatocyte pyroptosis through a novel DAG-PKCδ-NLRC4 axis and holds promise as a therapeutic target for NASH.


Assuntos
Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Piroptose , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Hepatology ; 66(2): 416-431, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28073164

RESUMO

Free cholesterol (FC) accumulation in the liver is an important pathogenic mechanism of nonalcoholic steatohepatitis (NASH). Plasmalogens, key structural components of the cell membrane, act as endogenous antioxidants and are primarily synthesized in the liver. However, the role of hepatic plasmalogens in metabolic liver disease is unclear. In this study, we found that hepatic levels of docosahexaenoic acid (DHA)-containing plasmalogens, expression of glyceronephosphate O-acyltransferase (Gnpat; the rate-limiting enzyme in plasmalogen biosynthesis), and expression of Pparα were lower in mice with NASH caused by accumulation of FC in the liver. Cyclodextrin-induced depletion of FC transactivated Δ-6 desaturase by increasing sterol regulatory element-binding protein 2 expression in cultured hepatocytes. DHA, the major product of Δ-6 desaturase activation, activated GNPAT, thereby explaining the association between high hepatic FC and decreased Gnpat expression. Gnpat small interfering RNA treatment significantly decreased peroxisome proliferator-activated receptor α (Pparα) expression in cultured hepatocytes. In addition to GNPAT, DHA activated PPARα and increased expression of Pparα and its target genes, suggesting that DHA in the DHA-containing plasmalogens contributed to activation of PPARα. Accordingly, administration of the plasmalogen precursor, alkyl glycerol (AG), prevented hepatic steatosis and NASH through a PPARα-dependent increase in fatty acid oxidation. Gnpat+/- mice were more susceptible to hepatic lipid accumulation and less responsive to the preventive effect of fluvastatin on NASH development, suggesting that endogenous plasmalogens prevent hepatic steatosis and NASH. CONCLUSION: Increased hepatic FC in animals with NASH decreased plasmalogens, thereby sensitizing animals to hepatocyte injury and NASH. Our findings uncover a novel link between hepatic FC and plasmalogen homeostasis through GNPAT regulation. Further study of AG or other agents that increase hepatic plasmalogen levels may identify novel therapeutic strategies against NASH. (Hepatology 2017;66:416-431).


Assuntos
Fígado Gorduroso/metabolismo , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Plasmalogênios/metabolismo , Análise de Variância , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/farmacologia , Fígado Gorduroso/patologia , Fluvastatina , Glucosamina 6-Fosfato N-Acetiltransferase/efeitos dos fármacos , Imuno-Histoquímica , Indóis/farmacologia , Masculino , Subunidade 1 do Complexo Mediador/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Distribuição Aleatória , Sensibilidade e Especificidade , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 486(4): 1014-1020, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28363867

RESUMO

Mitochondrial dynamics, including constant fusion and fission, play critical roles in maintaining mitochondrial morphology and function. Here, we report that developmentally regulated GTP-binding protein 2 (DRG2) regulates mitochondrial morphology by modulating the expression of the mitochondrial fission gene dynamin-related protein 1 (Drp1). shRNA-mediated silencing of DRG2 induced mitochondrial swelling, whereas expression of an shRNA-resistant version of DRG2 decreased mitochondrial swelling in DRG2-depleted cells. Analysis of the expression levels of genes involved in mitochondrial fusion and fission revealed that DRG2 depletion significantly decreased the level of Drp1. Overexpression of Drp1 rescued the defect in mitochondrial morphology induced by DRG2 depletion. DRG2 depletion reduced the mitochondrial membrane potential, oxygen consumption rate (OCR), and amount of mitochondrial DNA (mtDNA), whereas it increased reactive oxygen species (ROS) production and apoptosis. Taken together, our data demonstrate that DRG2 acts as a regulator of mitochondrial fission by controlling the expression of Drp1.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Regulação para Baixo/fisiologia , Dinaminas , Células HeLa , Humanos
4.
Clin Immunol ; 150(2): 225-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463315

RESUMO

Developmentally regulated GTP-binding protein 2 (DRG2) represents a novel subclass of GTP-binding proteins. We here report that transgenic overexpression of DRG2 in mice ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The protective effect of DRG2 in EAE was mediated by the inhibition of the development of T(H)17 cells. DRG2 enhanced the activity of PPARγ, which led to an inhibition of the nuclear factor kappa B (NF-κB) activity and IL-6 production in antigen presenting cells and an inhibition of the development of T(H)17 cells. Our results demonstrate that DRG2 is an essential modulator of EAE.


Assuntos
Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Proteínas de Ligação ao GTP/genética , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Diferenciação Celular , Proteínas Correpressoras/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Genótipo , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/citologia , Células Th17/metabolismo
5.
J Biol Chem ; 286(24): 21577-87, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21507959

RESUMO

Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability. We previously showed that TTP acts as a negative regulator of VEGF gene expression in colon cancer cells. The p38 MAPK pathway is known to suppress the TTP activity. However, until now the signaling pathway to enhance TTP function is not well known. Here, we show that casein kinase 2 (CK2) enhances the TTP function in the regulation of the VEGF expression in colon cancer cells. CK2 increased TTP protein levels and enhanced VEGF mRNA decaying activity of TTP. TTP was not a direct target of CK2. Instead, CK2 increased the phosphorylation of MKP-1, which led to a decrease in the phosphorylation of p38 MAPK. Inhibition of MKP-1 by siRNA attenuated the increase in TTP function and the decrease of p38 phosphorylation induced by CK2α overexpression. TGF-ß1 increased the expressions of CK2 and TTP and the TTP function. The siRNA against CK2α or TTP reversed TGF-ß1-induced increases in the expression of CK2 and TTP and the TTP function. Our data suggest that CK2 enhances the protein level and activity of TTP via the modulation of the MKP-1-p38 MAPK signaling pathway and that TGF-ß1 enhances the activity of CK2.


Assuntos
Caseína Quinase II/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Tristetraprolina/química , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Estabilidade de RNA/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Biol Chem ; 286(28): 24735-42, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21606497

RESUMO

Nicotine inhibits the release of TNF-α from macrophage through activation of STAT3. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts containing AU-rich elements (ARE) in 3'-untranslated region (3'-UTR). Here we show that in LPS-stimulated human macrophages the anti-inflammatory action of nicotine is mediated by TTP. Nicotine induced activation of STAT3 enhanced STAT3 binding to the TTP promoter, increased TTP promoter activity, and increased TTP expression resulting in the suppression of LPS-stimulated TNF-α production. Overexpression of a dominant negative mutant of STAT3 (R382W) or down-regulation of STAT3 by siRNA abolished nicotine-induced TTP expression and suppression of LPS-stimulated TNF-α production. Nicotine enhanced the decay of TNF-α mRNA and decreased luciferase expression of a TNF-α 3'-UTR reporter plasmid in U937 cells. However, siRNA to TTP abrogated these effects of nicotine. In this experiment, we are reporting for the first time the involvement of TTP in the cholinergic anti-inflammatory cascade consisting of nicotine-STAT3-TTP-dampening inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Nicotina/farmacologia , Regiões Promotoras Genéticas , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas/genética , Substituição de Aminoácidos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Mutação de Sentido Incorreto , Agonistas Nicotínicos/farmacologia , Ligação Proteica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Tristetraprolina/genética , Fator de Necrose Tumoral alfa/biossíntese , Células U937
7.
Biochim Biophys Acta ; 1809(3): 184-90, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21296692

RESUMO

Developmentally regulated GTP-binding protein 2 (DRG2) is an evolutionarily conserved GTP-binding protein. DRG2 mRNA expression has been confirmed in many animal and human tissues. DRG2 is thought to play an essential role in the control of cell growth and differentiation. However, transcriptional regulation of DRG2 is largely unknown. To investigate the mechanisms controlling DRG2 expression, we cloned 1509bp of the 5'-flanking sequence of this gene. Deletion analysis showed that the region between -113 and -70 is essential for the basal level expression of the DRG2 gene in K562 human erythroleukemic cells. Mutation of a putative stimulating protein 1 (Sp1) regulatory site located at position -108 resulted in a significant decline in DRG2 promoter activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that Sp1 binds to this site. Knockdown of Sp1 expression using siRNA inhibited the promoter activation as well as the endogenous DRG2 transcriptional level. Taken together, these results demonstrate that basal expression level of DRG2 is regulated by the Sp1 transcription factor.


Assuntos
Proteínas de Ligação ao GTP/genética , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Sobrevivência Celular , Análise Mutacional de DNA , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Células K562 , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Deleção de Sequência
8.
Cell Mol Gastroenterol Hepatol ; 13(3): 925-947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890841

RESUMO

BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n -octylphenyl)ethyl]-1,3- propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4+/- mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domain-containning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4+/- mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages.


Assuntos
Inflamassomos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato
9.
J Biol Chem ; 285(23): 17329-37, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20335167

RESUMO

LATS2 is a tumor suppressor gene implicated in the control of cell growth and the cell cycle. Here, we investigated the post-transcriptional regulation of LATS2 expression by tristetraprolin (TTP). Our results show that the expression level of LATS2 is inversely correlated with TTP expression in human cancer cell lines. Overexpression of TTP reduced the expression level of LATS2. Conversely, treatment with small interfering RNA against TTP increased the expression level of LATS2 through stabilization of LATS2 mRNA and suppressed the proliferation of A549 human lung cancer cells. LATS2 mRNA contains AU-rich elements (AREs) within the 3'-untranslated region, and TTP destabilized a luciferase mRNA containing LATS2 ARE. In addition, RNA electrophoretic mobility shift assay revealed that TTP directly bound to the ARE of LATS2 mRNA. These results establish LATS2 mRNA as a physiological target of TTP and suggest the possibility that TTP controls cell growth through regulation of LATS2 mRNA stability.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Tristetraprolina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Estabilidade de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Autophagy ; 17(5): 1205-1221, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32400277

RESUMO

Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood. in this study, we showed that global or brown adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochondrial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3 was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3 induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differentiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1 knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy is different from general autophagy in regulating adipose tissue and whole-body energy metabolism. Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue; BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet; IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.


Assuntos
Tecido Adiposo Marrom/metabolismo , Autofagia/fisiologia , Inflamassomos/metabolismo , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adipócitos/metabolismo , Animais , Metabolismo Energético/fisiologia , Camundongos Knockout , Mitocôndrias/metabolismo , Mitofagia/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Exp Mol Med ; 51(7): 1-14, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285429

RESUMO

The administration of mesenchymal stem cells (MSCs) was shown to attenuate overt as well as early diabetic nephropathy in rodents, but the underlying mechanism of this beneficial effect is largely unknown. Inflammation and mitochondrial dysfunction are major pathogenic factors in diabetic nephropathy. In this study, we found that the repeated administration of MSCs prevents albuminuria and injury to tubular epithelial cells (TECs), an important element in the progression of diabetic nephropathy, by improving mitochondrial function. The expression of M1 macrophage markers was significantly increased in diabetic kidneys compared with that in control kidneys. Interestingly, the expression of arginase-1 (Arg1), an important M2 macrophage marker, was reduced in diabetic kidneys and increased by MSC treatment. In cultured TECs, conditioned media from lipopolysaccharide-activated macrophages reduced peroxisomal proliferator-activated receptor gamma coactivator 1α (Pgc1a) expression and impaired mitochondrial function. The coculture of macrophages with MSCs increased and decreased the expression of Arg1 and M1 markers, respectively. Treatment with conditioned media from cocultured macrophages prevented activated macrophage-induced mitochondrial dysfunction in TECs. In the absence of MSC coculture, Arg1 overexpression in macrophages reversed Pgc1a suppression in TECs. These observations suggest that MSCs prevent the progression of diabetic nephropathy by reversing mitochondrial dysfunction in TECs via the induction of Arg1 in macrophages.


Assuntos
Albuminúria/prevenção & controle , Arginase/metabolismo , Complicações do Diabetes/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Animais , Arginase/genética , Linhagem Celular , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/metabolismo , Rim/patologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Mitocôndrias/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
12.
FEBS Lett ; 580(1): 311-8, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16376337

RESUMO

This study demonstrates a requirement for NF-kappaB activation in cis-diamminedichloroplatinum (cisplatin)-induced apoptosis in human head and neck squamous cell carcinoma (HNSCC) cell lines. This conclusion was supported by the following observations: cisplatin induced IkappaBalpha degradation and NF-kappaB-dependent transcriptional activation prior to cell death; pyrrolidine dithiocarbamate (PDTC), a chemical inhibitor of NF-kappaB activation, prevented apoptosis; lactacystin, an inhibitor of IkappaBalpha degradation, also prevented apoptosis; and finally, the expression of a super-repressor mutant IkappaBalpha blocked apoptosis. The expression of tumor necrosis factor alpha (TNFalpha) was promoted by cisplatin treatment and was suppressed by PDTC treatment. In addition, a neutralizing antibody against TNFalpha protected cells from cisplatin-induced apoptosis. These findings suggest that NF-kappaB activation is required for cisplatin-induced apoptosis and TNFalpha may play an important role in NF-kappaB-mediated apoptosis in cisplatin-treated HNSCC cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , NF-kappa B/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
13.
Diabetes Metab J ; 40(5): 376-385, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27098507

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. METHODS: Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver. RESULTS: Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels. CONCLUSION: Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

14.
Mol Biol Cell ; 27(2): 334-48, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582392

RESUMO

The small GTPase Rab5 regulates the early endocytic pathway of transferrin (Tfn), and Rab5 deactivation is required for Tfn recycling. Rab5 deactivation is achieved by RabGAP5, a GTPase-activating protein, on the endosomes. Here we report that recruitment of RabGAP5 is insufficient to deactivate Rab5 and that developmentally regulated GTP-binding protein 2 (DRG2) is required for Rab5 deactivation and Tfn recycling. DRG2 was associated with phosphatidylinositol 3-phosphate-containing endosomes. It colocalized and interacted with EEA1 and Rab5 on endosomes in a phosphatidylinositol 3-kinase-dependent manner. DRG2 depletion did not affect Tfn uptake and recruitment of RabGAP5 and Rac1 to Rab5 endosomes. However, it resulted in impairment of interaction between Rab5 and RabGAP5, Rab5 deactivation on endosomes, and Tfn recycling. Ectopic expression of shRNA-resistant DRG2 rescued Tfn recycling in DRG2-depleted cells. Our results demonstrate that DRG2 is an endosomal protein and a key regulator of Rab5 deactivation and Tfn recycling.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Transferrina/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Endocitose/fisiologia , Endossomos/metabolismo , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Células MCF-7 , Masculino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular/metabolismo
15.
Diabetes ; 65(9): 2516-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246913

RESUMO

Fibrosis of adipose tissue induces ectopic fat accumulation and insulin resistance by inhibiting adipose tissue expandability. Mechanisms responsible for the induction of adipose tissue fibrosis may provide therapeutic targets but are poorly understood. In this study, high-fat diet (HFD)-fed wild-type (WT) and iNOS(-/-) mice were used to examine the relationship between nitric oxide (NO) produced by macrophages and adipose tissue fibrosis. In contrast to WT mice, iNOS(-/-) mice fed an HFD were protected from infiltration of proinflammatory macrophages and adipose tissue fibrosis. Hypoxia-inducible factor 1α (HIF-1α) protein level was increased in adipose tissue of HFD-fed WT mice, but not iNOS(-/-) mice. In contrast, the expression of mitochondrial biogenesis factors was decreased in HFD-fed WT mice, but not iNOS(-/-) mice. In studies with cultured cells, macrophage-derived NO decreased the expression of mitochondrial biogenesis factors, and increased HIF-1α protein level, DNA damage, and phosphorylated p53 in preadipocytes. By activating p53 signaling, NO suppressed peroxisome proliferator-activated receptor γ coactivator 1α expression, which induced mitochondrial dysfunction and inhibited preadipocyte differentiation in adipocytes. The effects of NO were blocked by rosiglitazone. The findings suggest that NO produced by macrophages induces mitochondrial dysfunction in preadipocytes by activating p53 signaling, which in turn increases HIF-1α protein level and promotes a profibrogenic response in preadipocytes that results in adipose tissue fibrosis.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Fibrose/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Fibrose/etiologia , Imunofluorescência , Teste de Tolerância a Glucose , Isotiurônio/análogos & derivados , Isotiurônio/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Células RAW 264.7
16.
J Endocrinol ; 225(3): 147-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869616

RESUMO

Mitochondrial dysfunction in hypertrophic adipocytes can reduce adiponectin synthesis. We investigated whether 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) expression is increased in hypertrophic adipocytes and whether this is responsible for mitochondrial dysfunction and reduced adiponectin synthesis. Differentiated 3T3L1 adipocytes were cultured for up to 21 days. The effect of AZD6925, a selective 11ß-HSD1 inhibitor, on metabolism was examined. db/db mice were administered 600 mg/kg AZD6925 daily for 4 weeks via gastric lavage. Mitochondrial DNA (mtDNA) content, mRNA expression levels of 11 ß -H sd1 and mitochondrial biogenesis factors, adiponectin synthesis, fatty acid oxidation (FAO), oxygen consumption rate and glycolysis were measured. Adipocyte hypertrophy in 3T3L1 cells exposed to a long duration of culture was associated with increased 11 ß -Hsd1 mRNA expression and reduced mtDNA content, mitochondrial biogenesis factor expression and adiponectin synthesis. These cells displayed reduced mitochondrial respiration and increased glycolysis. Treatment of these cells with AZD6925 increased adiponectin synthesis and mitochondrial respiration. Inhibition of FAO by etomoxir blocked the AZD6925-induced increase in adiponectin synthesis, indicating that 11ß-HSD1-mediated reductions in FAO are responsible for the reduction in adiponectin synthesis. The expression level of 11 ß -Hsd1 was higher in adipose tissues of db/db mice. Administration of AZD6925 to db/db mice increased the plasma adiponectin level and adipose tissue FAO. In conclusion, increased 11ß-HSD1 expression contributes to reduced mitochondrial respiration and adiponectin synthesis in hypertrophic adipocytes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Obesidade/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Células 3T3-L1 , Adamantano/análogos & derivados , Adamantano/uso terapêutico , Adiponectina/sangue , Adiponectina/genética , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hipertrofia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipotrópicos/farmacologia , Lipotrópicos/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Mutantes , Dinâmica Mitocondrial , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/tratamento farmacológico , Obesidade/patologia , Obesidade/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos
17.
J Biochem ; 135(3): 331-5, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15113831

RESUMO

DRG2, a member of the DRG subfamily in the GTP-binding protein superfamily, was identified as a repressed gene product in fibroblasts transformed by SV40. The significance of this down-regulation and the cellular role of DRG2 has not been understood in the past. To investigate the function of DRG2 we made a Jurkat cell line, Jurkat-LNCX2-DRG2, stably transfected with pLNCX2-DRG2 to overexpress human DRG2. Cell cycle distribution analysis revealed an increased accumulation of G(2)/M phase cells in Jurkat-LNCX2-DRG2 cells, indicating a retardation of cell-cycle progression. In addition, an overexpression of DRG2 reduced the sensitivity of Jurkat cells to the mitotic poison nocodazole. Our data suggest that overexpression of DRG2 in Jurkat cells affects genes regulating cell-cycle arrest and apoptosis, and that these molecular changes may be important in the growth or differentiation of cells.


Assuntos
Apoptose/efeitos dos fármacos , Divisão Celular , Fase G2 , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Nocodazol/farmacologia , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Humanos , Células Jurkat , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
18.
Dis Aquat Organ ; 53(1): 11-3, 2003 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-12608563

RESUMO

In Korea, mass mortality occurred among cultured shrimp with visible macroscopic white spots in 2000, and we confirmed the presence of white spot syndrome virus (WSSV) in the tissues of moribund shrimp by electron microscopy. In order to identify the characteristics of this Korean isolate of WSSV, we cloned and characterized its genomic DNA coding for VP24, VP26, and VP28. On the nucleotide level, VP24, VP26, and VP28 of the Korean isolate were found to be 100%, 100%, and 99% identical to those of Taiwan, Thailand and Chinese isolates, respectively. On the deduced amino-acid level, all 3 virion proteins showed 100% identity to those of the foreign isolates. The extent of sequence identity suggests that the Korean isolate originated from the same ancestor as the Taiwanese, Thai and Chinese isolates.


Assuntos
Proteínas do Capsídeo/genética , Vírus de DNA/genética , DNA Viral/química , Penaeidae/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas do Capsídeo/química , Sequência Conservada , Vírus de DNA/química , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , DNA Viral/genética , Amplificação de Genes , Coreia (Geográfico) , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética , Vírion/química , Vírion/classificação , Vírion/genética , Vírion/isolamento & purificação
19.
Oncol Rep ; 32(4): 1537-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25109698

RESUMO

The purpose of the present study was to identify a predictive marker associated with tumor progression or recurrence. We investigated the expression of p53, Ki-67, Bax, Bcl-2, vascular endothelial growth factor (VEGF)-A, VEGFR-1, VEGFR-2 and neuropilin-1 (NRP-1) in pituitary adenomas (PAs) with/without tumor progression during follow-up periods. We compared the expression of these molecules in primary and recurrent specimens to identify a predictive marker associated with tumor progression. Nineteen patients had no progression for more than 5-years of follow-up. Nine patients had tumor progression within 5 years of their first transsphenoidal surgery (TSS) surgery and underwent re-TSS for treating progression of adenoma. Tumor size was larger and involvement of the cavernous sinus was more frequent in the progression group than these variables in the no progression group. A strong association was observed between NRP-1 expression and tumor progression. No significant risk for developing tumor progression was associated with Ki-67, p53, Bax, Bcl-2, VEGFR-1, VEGFR-2, or VEGF-A expression. Four of nine patients showed strong NRP-1 immunoreactivity in progression specimens. Negative NRP-1 immunoreactivity in the initial specimens was converted into strong positivity in the progression specimens of five patients. NRP-1 could be a relevant PA marker of progression and could be a potential target for medical therapy.


Assuntos
Adenoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neuropilina-1/metabolismo , Neoplasias Hipofisárias/metabolismo , Adenoma/patologia , Adenoma/cirurgia , Adulto , Idoso , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Neuropilina-1/genética , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/cirurgia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
20.
Exp Mol Med ; 44(9): 562-70, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22809900

RESUMO

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are considered the key determinants of insulin resistance. Impaired mitochondrial function in obese animals was shown to induce the ER stress response, resulting in reduced adiponectin synthesis in adipocytes. The expression of inducible nitric oxide synthase (iNOS) is increased in adipose tissues in genetic and dietary models of obesity. In this study, we examined whether activation of iNOS is responsible for palmitate-induced mitochondrial dysfunction, ER stress, and decreased adiponectin synthesis in 3T3L1 adipocytes. As expected, palmitate increased the expression levels of iNOS and ER stress response markers, and decreased mitochondrial contents. Treatment with iNOS inhibitor increased adiponectin synthesis and reversed the palmitate-induced ER stress response. However, the iNOS inhibitor did not affect the palmitate-induced decrease in mitochondrial contents. Chemicals that inhibit mitochondrial function increased iNOS expression and the ER stress response, whereas measures that increase mitochondrial biogenesis (rosiglitazone and adenoviral overexpression of nuclear respiratory factor-1) reversed them. Inhibition of mitochondrial biogenesis prevented the rosiglitazone-induced decrease in iNOS expression and increase in adiponectin synthesis. These results suggest that palmitate-induced mitochondrial dysfunction is the primary event that leads to iNOS induction, ER stress, and decreased adiponectin synthesis in cultured adipocytes.


Assuntos
Adipócitos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo II , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiponectina/biossíntese , Tecido Adiposo/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Resistência à Insulina/genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Renovação Mitocondrial/efeitos dos fármacos , Renovação Mitocondrial/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fator 1 Nuclear Respiratório , Obesidade/genética , Obesidade/metabolismo , Ácido Palmítico/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA