Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7783-7791, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869099

RESUMO

The increasing use of low-cost lithium iron phosphate cathodes in low-end electric vehicles has sparked interest in Prussian blue analogues (PBAs) for lithium-ion batteries. A major challenge with iron hexacyanoferrate (FeHCFe), particularly in lithium-ion systems, is its slow kinetics in organic electrolytes and valence state inactivation in aqueous ones. We have addressed these issues by developing a polymeric cathode electrolyte interphase (CEI) layer through a ring-opening reaction of ethylene carbonate triggered by OH- radicals from structural water. This facile approach considerably mitigates the sluggish electrochemical kinetics typically observed in organic electrolytes. As a result, FeHCFe has achieved a specific capacity of 125 mAh g-1 with a stable lifetime over 500 cycles, thanks to the effective activation of Fe low-spin states and the structural integrity of the CEI layers. These advancements shed light on the potential of PBAs to be viable, durable, and efficient cathode materials for commercial use.

2.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732902

RESUMO

This study introduces a fault diagnosis algorithm based on particle filtering for open-cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method for the startup process, accounting for more than 30% of engine failures. Similar to the previous fault detection and diagnosis (FDD) algorithm for the startup process, the algorithm in this study is composed of a nonlinear filter to generate residuals, a residual analysis, and a multiple-model (MM) approach to detect and diagnose faults from the residuals. In contrast to the previous study, this study makes use of the modified cumulative sum (CUSUM) algorithm, widely used in change-detection monitoring, and a particle filter (PF), which is theoretically the most accurate nonlinear filter. The algorithm is confirmed numerically using the CUSUM and MM methods. Subsequently, the FDD algorithm is compared with an algorithm from a previous study using a Monte Carlo simulation. Through a comparative analysis of algorithmic performance, this study demonstrates that the current PF-based FDD algorithm outperforms the algorithm based on other nonlinear filters.

3.
Nano Lett ; 23(8): 3582-3591, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027522

RESUMO

Over the past decade, lithium metal has been considered the most attractive anode material for high-energy-density batteries. However, its practical application has been hindered by its high reactivity with organic electrolytes and uncontrolled dendritic growth, resulting in poor Coulombic efficiency and cycle life. In this paper, we propose a design strategy for interface engineering using a conversion-type reaction of metal fluorides to evolve a LiF passivation layer and Li-M alloy. Particularly, we propose a LiF-modified Li-Mg-C electrode, which demonstrates stable long-term cycling for over 2000 h in common organic electrolytes with fluoroethylene carbonate (FEC) additives and over 700 h even without additives, suppressing unwanted side reactions and Li dendritic growth. With the help of phase diagrams, we found that solid-solution-based alloying not only facilitates the spontaneous evolution of a LiF layer and bulk alloy but also enables reversible Li plating/stripping inward to the bulk, compared with intermetallic compounds with finite Li solubility.

4.
Nano Lett ; 22(4): 1804-1811, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34898226

RESUMO

Transition metal layered oxides (LiNixCoyMn1-x-yO2, NCM) have been considered as one of the most promising cathodes for lithium-ion batteries used in long-mileage electric vehicles and energy storage systems. Despite its potential interest, dissolved transition metal (TM) ions toward anode sides can catalyze parasitic reactions such as electrolytic decomposition and dendritic Li growth, ultimately leading to catastrophic safety hazards. In this study, we demonstrate that Prussian Blue (PB) nanoparticles anchored to a commercial PE separator significantly reduce cell resistance and effectively suppress TM crossover during cycling, even under harsh conditions that accelerate Ni dissolution. Therefore, using a PB-coated separator in a harsh condition to intentionally dissolve Ni2+ ions at a high cutoff potential of 4.6 V, NCM||graphite full cells maintain 50.8% of their initial capacity at the 150th cycle. Scalable production of PB-coated separator through the facile synthetic methods can help establish a new research direction for the design of high-energy-density batteries.

5.
Nano Lett ; 22(21): 8509-8518, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315593

RESUMO

Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).

6.
ACS Appl Mater Interfaces ; 14(4): 5237-5246, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981917

RESUMO

The practical use of silicon anodes is interfered by the following key factors: volume expansion, slow kinetics, and low electrical and ionic conductivities. Many studies have focused on surface engineering from the particle to electrode level to achieve stability and energy density. Herein, simple nitrogen gas plasma is introduced as a surface treatment method for silicon-based electrodes to avoid the problems of material synthesis-based functionalizations (e.g., high cost, time consuming, and low quality). The introduction of activated nitrogen gas on electrode surfaces changes the binding energy and resistance of silicon, increasing the reversibility of the charge/discharge reaction of silicon-based anodes. In addition, such doping and dehydrogenation of the electrode surface improve reaction kinetics to 876 mA h g-1 specific capacity at 8.5 A g-1 in silicon/graphite anodes even with a high silicon content of 40%. The proposed strategy, through nitrogen plasma, offers advantages for direct functionalization on electrode surfaces by a simple method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA