RESUMO
High-throughput intact glycopeptide analysis is crucial for elucidating the physiological and pathological status of the glycans attached to each glycoprotein. Mass spectrometry-based glycoproteomic methods are challenging because of the diversity and heterogeneity of glycan structures. Therefore, we developed an MS1-based site-specific glycoform analysis method named "Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile (Glyco-RIDGE)" for a more comprehensive analysis. This method detects glycopeptide signals as a cluster based on the mass and chromatographic properties of glycopeptides and then searches for each combination of core peptides and glycan compositions by matching their mass and retention time differences. Here, we developed a novel browser-based software named GRable for semi-automated Glyco-RIDGE analysis with significant improvements in glycopeptide detection algorithms, including "parallel clustering." This unique function improved the comprehensiveness of glycopeptide detection and allowed the analysis to focus on specific glycan structures, such as pauci-mannose. The other notable improvement is evaluating the "confidence level" of the GRable results, especially using MS2 information. This function facilitated reduced misassignment of the core peptide and glycan composition and improved the interpretation of the results. Additional improved points of the algorithms are "correction function" for accurate monoisotopic peak picking; one-to-one correspondence of clusters and core peptides even for multiply sialylated glycopeptides; and "inter-cluster analysis" function for understanding the reason for detected but unmatched clusters. The significance of these improvements was demonstrated using purified and crude glycoprotein samples, showing that GRable allowed site-specific glycoform analysis of intact sialylated glycoproteins on a large-scale and in-depth. Therefore, this software will help us analyze the status and changes in glycans to obtain biological and clinical insights into protein glycosylation by complementing the comprehensiveness of MS2-based glycoproteomics. GRable can be freely run online using a web browser via the GlyCosmos Portal (https://glycosmos.org/grable).
Assuntos
Glicopeptídeos , Polissacarídeos , Software , Glicopeptídeos/análise , Glicopeptídeos/química , Polissacarídeos/química , Polissacarídeos/análise , Humanos , Algoritmos , Análise por Conglomerados , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Glicoproteínas/química , Glicosilação , Glicômica/métodosRESUMO
Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.
Assuntos
Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Apoptose/genética , Apoptose/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Expressão Ectópica do Gene/genética , Expressão Ectópica do Gene/fisiologia , Epigênese Genética/genética , Hepatócitos/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Immunoblotting , Histona Desmetilases com o Domínio Jumonji/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
MOTIVATION: The analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-Seq data are time-course data with high time resolution. Although time-course data are useful for inferring networks, conventional inference algorithms for such data suffer from high time complexity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to infer networks from single-cell RNA-Seq during differentiation. RESULTS: In this study, we developed the novel and efficient algorithm SCODE to infer regulatory networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We evaluated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network. The performance of SCODE was best for two of the datasets and nearly best for the remaining dataset. We also compared the runtimes and showed that the runtimes for SCODE are significantly shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-cell differentiation analyses. AVAILABILITY AND IMPLEMENTATION: The R source code of SCODE is available at https://github.com/hmatsu1226/SCODE. CONTACT: hirotaka.matsumoto@riken.jp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Software , Algoritmos , Animais , Humanos , Camundongos , Análise de Célula Única/métodosRESUMO
KEY POINTS: The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO3- concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO3- . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO3- concentrations is to minimize the secretion of Cl- ions. These findings help to clarify the mechanism responsible for pancreatic HCO3- secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. ABSTRACT: A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO3- ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na+ -HCO3- cotransporter (NBC1) and apical Cl- /HCO3- exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K+ permeability and apical Cl- and HCO3- permeabilities (CFTR), and reducing the activity of the basolateral Cl- /HCO3- exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted â¼140 mm HCO3- at a rate of â¼3 nl min-1 mm-2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl- /HCO3- exchange via SLC26A6 at the apical membrane were able to support a HCO3- -rich secretion. Raising the HCO3- /Cl- permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO3- concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by â¼80% was essential in minimizing the intracellular Cl- concentration following cAMP stimulation and thereby maximizing the secreted HCO3- concentration. The addition of a basolateral Na+ -K+ -2Cl- cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl- and resulted in a lower secreted HCO3- concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl- secretion is the main requirement for secreting 140 mm HCO3- .
Assuntos
Bicarbonatos/metabolismo , Cloretos/metabolismo , Ductos Pancreáticos/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Epitélio/metabolismo , Cobaias , Potenciais da Membrana , Proteínas de Membrana Transportadoras/metabolismo , Modelos BiológicosRESUMO
Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.
Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/citologia , Neurônios/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes/genética , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Neurônios/metabolismoRESUMO
Although cystic fibrosis is rare in Japanese, measurement of sweat Cl(-) has suggested mild dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR) in some patients with chronic pancreatitis. In the present study, we have investigated the association of CFTR variants and chronic pancreatitis in Japanese and the functional characteristics of a Japanese- and pancreatitis-specific CFTR variant, L1156F. Seventy patients with alcoholic chronic pancreatitis, 18 patients with idiopathic chronic pancreatitis, and 180 normal subjects participated. All exons and their boundaries and promoter region of the CFTR gene were sequenced. Human embryonic kidney-293 cells were transfected with three CFTR variants (M470V, L1156F, and M470V+L1156F), and the protein expression was examined. Xenopus laevis oocytes were injected with the CFTR variants, and bicarbonate (HCO3 (-)) transport activity was examined. CFPAC-1 cells were transfected with the CFTR variants and Cl(-)/HCO3 (-) exchange activity was examined. Six variants (E217G, I556V, M470V, L1156F, Q1352H, and R1453W) were identified in the coding region of the CFTR gene. Cystic fibrosis-causing mutations were not found. The allele frequencies of L1156F and Q1352H in alcoholic chronic pancreatitis (5.0 and 7.9%) were significantly (P < 0.01) higher than those in normal subjects (0.6 and 1.9%). L1156F was linked with a worldwide CFTR variant, M470V. Combination of M470V and L1156F significantly reduced CFTR expression to â¼60%, impaired CFTR-mediated HCO3 (-)/Cl(-) transport activity to 50-60%, and impaired CFTR-coupled Cl(-)/HCO3 (-) exchange activity to 20-30%. The data suggest that the Japanese-specific CFTR variant L1156F causes mild dysfunction of CFTR and increases the risk of alcoholic chronic pancreatitis in Japanese.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação de Sentido Incorreto , Pancreatite Alcoólica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bicarbonatos/metabolismo , Estudos de Casos e Controles , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Éxons , Feminino , Frequência do Gene , Células HEK293 , Humanos , Transporte de Íons , Japão , Masculino , Pessoa de Meia-Idade , XenopusRESUMO
The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.
Assuntos
Genoma Humano , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Dedos de Zinco , Repetições de Microssatélites , Proteínas de Ligação a DNA/genéticaRESUMO
The modified total Sharp score (mTSS) is often used as an evaluation index for joint destruction caused by rheumatoid arthritis. In this study, special findings (ankylosis, subluxation, and dislocation) are detected to estimate the efficacy of mTSS by using deep neural networks (DNNs). The proposed method detects and classifies finger joint regions using an ensemble mechanism. This integrates multiple DNN detection models, specifically single shot multibox detectors, using different training data for each special finding. For the learning phase, we prepared a total of 260 hand X-ray images, in which proximal interphalangeal (PIP) and metacarpophalangeal (MP) joints were annotated with mTSS by skilled rheumatologists and radiologists. We evaluated our model using five-fold cross-validation. The proposed model produced a higher detection accuracy, recall, precision, specificity, F-value, and intersection over union than individual detection models for both ankylosis and subluxation detection, with a detection rate above 99.8% for the MP and PIP joint regions. Our future research will aim at the development of an automatic diagnosis system that uses the proposed mTSS model to estimate the erosion and joint space narrowing score.
Assuntos
Anquilose , Luxações Articulares , Humanos , Radiografia , Mãos/diagnóstico por imagem , Articulações dos Dedos , Redes Neurais de Computação , Anquilose/diagnóstico por imagem , Luxações Articulares/diagnóstico por imagemRESUMO
We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4âº) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4⺠cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4⺠cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas.
Assuntos
Células Acinares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Pancreatite/metabolismo , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
We propose a wrist joint subluxation/ankylosis classification model for an automatic radiographic scoring system for X-ray images. In managing rheumatoid arthritis, the evaluation of joint destruction is important. The modified total Sharp score (mTSS), which is conventionally used to evaluate joint destruction of the hands and feet, should ideally be automated because the required time depends on the skill of the evaluator, and there is variability between evaluators. Since joint subluxation and ankylosis are given a large score in mTSS, we aimed to estimate subluxation and ankylosis using a deep neural network as a first step in developing an automatic radiographic scoring system for joint destruction. We randomly extracted 216 hand X-ray images from an electronic medical record system for the learning experiments. These images were acquired from patients who visited the rheumatology department of Keio University Hospital in 2015. Using our newly developed annotation tool, well-trained rheumatologists and radiologists labeled the mTSS to the wrist, metacarpal phalangeal joints, and proximal interphalangeal joints included in the images. We identified 21 X-ray images containing one or more subluxation joints and 42 X-ray images with ankylosis. To predict subluxation/ankylosis, we conducted five-fold cross-validation with deep neural network models: AlexNet, ResNet, DenseNet, and Vision Transformer. The best performance on wrist subluxation/ankylosis classification was as follows: accuracy, precision, recall, F1 value, and AUC were 0.97±0.01/0.89±0.04, 0.92±0.12/0.77±0.15, 0.77±0.16/0.71±0.13, 0.82±0.11/0.72±0.09, and 0.92±0.08/0.85±0.07, respectively. The classification model based on a deep neural network was trained with a relatively small dataset; however, it showed good accuracy. In conclusion, we provided data collection and model training schemes for mTSS prediction and showed an important contribution to building an automated scoring system.
Assuntos
Anquilose , Artrite Reumatoide , Aprendizado Profundo , Articulação da Mão , Luxações Articulares , Humanos , Artrite Reumatoide/diagnóstico por imagem , Anquilose/diagnóstico por imagem , Luxações Articulares/diagnóstico por imagemRESUMO
To define the stoichiometry and molecular identity of the Cl(-)/HCO(3)(-) exchanger in the apical membrane of pancreatic duct cells, changes in luminal pH and volume were measured simultaneously in interlobular pancreatic ducts isolated from wild-type and Slc26a6-null mice. Transepithelial fluxes of HCO(3)(-) and Cl(-) were measured in the presence of anion gradients favoring rapid exchange of intracellular HCO(3)(-) with luminal Cl(-) in cAMP-stimulated ducts. The flux ratio of Cl(-) absorption/HCO(3)(-) secretion was â¼0.7 in wild-type ducts and â¼1.4 in Slc26a6(-/-) ducts where a different Cl(-)/HCO(3)(-) exchanger, most likely SLC26A3, was found to be active. Interactions between Cl(-)/HCO(3)(-) exchange and cystic fibrosis transmembrane conductance regulator (CFTR) in cAMP-stimulated ducts were examined by measuring the recovery of intracellular pH after alkali-loading by acetate prepulse. Hyperpolarization induced by luminal application of CFTRinh-172 enhanced HCO(3)(-) efflux across the apical membrane via SLC26A6 in wild-type ducts but significantly reduced HCO(3)(-) efflux in Slc26a6(-/-) ducts. In microperfused wild-type ducts, removal of luminal Cl(-), or luminal application of dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid to inhibit SLC26A6, caused membrane hyperpolarization, which was abolished in Slc26a6(-/-) ducts. In conclusion, we have demonstrated that deletion of Slc26a6 alters the apparent stoichiometry of apical Cl(-)/HCO(3)(-) exchange in native pancreatic duct. Our results are consistent with SLC26A6 mediating 1:2 Cl(-)/HCO(3)(-) exchange, and the exchanger upregulated in its absence, most probably SLC26A3, mediating 2:1 exchange.
Assuntos
Antiporters/deficiência , Antiporters/genética , Bicarbonatos/farmacocinética , Cloretos/farmacocinética , Fibrose Cística/metabolismo , Ductos Pancreáticos/metabolismo , Animais , Fibrose Cística/genética , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Ductos Pancreáticos/citologia , Transportadores de SulfatoRESUMO
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in CFTR (CF transmembrane conductance regulator). Although CF is the most common hereditary disease in Caucasians, it is rare in Asian populations. Common disease-causing mutations of CFTR in Caucasians are rarely identified in Japanese patients with CF. In the present study, CFTR transcripts from nasal swab were analyzed in a Japanese boy, in addition to conventional PCR and direct sequence of all exons, their boundaries and promoter region of the CFTR gene. The boy was diagnosed with CF by chronic respiratory infection and the elevated sweat chloride level. None of the disease-causing mutations of CFTR was detected by the conventional analysis. Cloning and sequence of the CFTR transcripts revealed a heterozygous deletion spanning exons 16, 17a and 17b. The deletion was confirmed by multiplex ligation-dependent probe amplification and the direct sequence of the junction fragment obtained from the genomic DNA by primer walking, which revealed the mutation c.2908+1085_3367+260del7201. We also identified a splicing defect: deletion/skipping of exon 1 in the CFTR transcript from the other allele. The analysis of CFTR transcripts from nasal swab is recommended in the genetic analysis of CF in Japanese.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Heterozigoto , Splicing de RNA , Deleção de Sequência , Alelos , Povo Asiático , Sequência de Bases , Cloretos/análise , Cloretos/metabolismo , Clonagem Molecular , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Éxons , Testes Genéticos/métodos , Humanos , Lactente , Masculino , Mucosa Nasal/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Suor/metabolismoRESUMO
BACKGROUND: Autoimmune pancreatitis is characterized by diffuse swelling of the pancreas and a high serum immunoglobulin (Ig) G4 concentration. Histopathologically, dense infiltration of lymphocytes and IgG4-positive plasma cells with fibrosis are seen in the pancreas. Although allergic diseases complicating autoimmune pancreatitis have been reported, the clinical features of bronchial asthma complicated by autoimmune pancreatitis remain unclear. CASE SUMMARY: We report three cases of bronchial asthma preceding the onset of type 1 autoimmune pancreatitis by 3 months to 30 years. All three cases were males with high serum IgG, IgG4, and IgE concentrations. The radioallergosorbent tests were positive for common allergens such as mites and house dust. One case had a pulmonary manifestation that proved to be an inflammatory pseudotumor of the lung with an accumulation of IgG4-positive plasma cells. The asthma symptom was ameliorated by oral prednisolone therapy for autoimmune pancreatitis, and when the corticosteroid doses were reduced, asthma became worse in all three cases. DISCUSSION: It is possible that atopy and increased Th2 cell activity are related to a higher coincidence of IgG4-related diseases such as type 1 autoimmune pancreatitis. Because the present cases are few in number, further studies are necessary.
Assuntos
Asma/complicações , Doenças Autoimunes/complicações , Imunoglobulina G/sangue , Pancreatite/complicações , Adulto , Antialérgicos/administração & dosagem , Antialérgicos/uso terapêutico , Asma/diagnóstico , Asma/tratamento farmacológico , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatite/diagnóstico , Pancreatite/tratamento farmacológicoRESUMO
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete â¼140 mM HCO(3)(-) or more, mouse and rat ducts secrete â¼40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.
Assuntos
Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Clonagem Molecular , Ductos Pancreáticos/metabolismo , Animais , Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/genética , Feminino , Cobaias , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Potenciais da Membrana , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Oócitos , Ductos Pancreáticos/efeitos dos fármacos , Interferência de RNA , Especificidade da Espécie , Transportadores de Sulfato , Transfecção , Xenopus laevisRESUMO
BACKGROUND & AIMS: Corticosteroids are now widely accepted as a treatment for autoimmune pancreatitis (AIP). However, the molecular mechanism by which steroid treatment improves AIP remains largely unknown. The aim of this study was to elucidate cellular mechanisms by which corticosteroids improve both pancreatic exocrine function and histopathology in AIP. METHODS: Pancreatic exocrine function was evaluated by the secretin-stimulated function test and pancreatic biopsy specimens were processed for histologic analysis at the time of diagnosis and 3 months after initiation of steroid treatment. Expression and localization of proteins was assayed by immunohistochemistry. Analysis of immunoglobulin (Ig)G4-positive plasma cells was used to verify inflammation in AIP. RESULTS: The number of IgG4-positive plasma cells in pancreatic sections was decreased by steroid treatment, indicating reduced inflammation. Fluid, bicarbonate (HCO(3)(-)), and digestive enzyme secretions all were impaired in most patients with AIP. Corticosteroids improved both HCO(3)(-) and digestive enzyme secretion. A large fraction of the cystic fibrosis transmembrane conductance regulator (CFTR), which plays a central role in pancreatic duct HCO(3)(-) secretion, was mislocalized to the cytoplasm of duct cells before treatment. Corticosteroids corrected the localization of CFTR to the apical membrane, accounting for the improved HCO(3)(-) secretion. Steroid treatment resulted in regeneration of acinar cells, accounting for restored digestive enzyme secretion. CONCLUSIONS: Corticosteroids reduce inflammation and restore both digestive enzyme and HCO(3)(-) secretion in patients with AIP by regenerating acinar cells and correcting CFTR localization in pancreatic duct cells. Mislocalization of CFTR may explain aberrant HCO(3)(-) secretion in other forms of pancreatitis.
Assuntos
Corticosteroides/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pâncreas Exócrino/efeitos dos fármacos , Ductos Pancreáticos/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Regeneração/efeitos dos fármacos , Antígeno AC133 , Adulto , Idoso , Antígenos CD/metabolismo , Aquaporina 1/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Bicarbonatos/metabolismo , Feminino , Fibrose , Glicoproteínas/metabolismo , Humanos , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas Exócrino/imunologia , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/imunologia , Ductos Pancreáticos/metabolismo , Suco Pancreático/enzimologia , Pancreatite/imunologia , Pancreatite/metabolismo , Peptídeos/metabolismo , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Transporte Proteico , Fatores de Tempo , Resultado do TratamentoRESUMO
AIMS: The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP regulated chloride channel expressed in the apical plasma membrane of pancreatic duct cells where it plays an important role in fluid secretion. The purpose of this study was to elucidate the role of the CFTR chloride channel on ion and fluid secretion from the guinea-pig pancreas by manipulating the expression of CFTR by RNA interference or by luminal application of a CFTR selective activator, MPB91, in isolated cultured pancreatic ducts. MATERIALS AND METHODS: Using cDNA isolated from the guinea-pig small intestine, fragments of the CFTR gene were generated by polymerase chain reaction and directly sequenced. Two different RNA duplexes for small interference RNA (siRNA) were designed from the sequence obtained. Fluid secretion from the isolated guinea-pig pancreatic ducts was measured using video-microscopy. The amount of CFTR chloride channel or AQP1 water channel expressed in pancreatic ducts was examined by immunoblotting with antibodies against CFTR or AQP1, respectively. RESULTS: Guinea-pig CFTR consists of 1481 amino acid residues. An additional glutamine residue was found to be inserted between amino acid residues 403 and 404 of human CFTR. Forskolin-stimulated fluid secretion from intact pancreatic ducts was significantly higher in the presence of MPB91 compared to fluid secretion in the absence of MPB91. Both basal and forskolin-stimulated fluid secretion in pancreatic ducts transfected with CFTR specific siRNAs were reduced by â¼50% compared to fluid secretion from ducts transfected with scrambled negative control dsRNAs. The amount of CFTR and AQP1 proteins was reduced to 34% and 45% of control, respectively. CONCLUSIONS: The activity of the CFTR chloride channel or the amount of CFTR protein expressed determines the rate of fluid secretion from the isolated guinea-pig pancreatic ducts.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Ductos Pancreáticos/metabolismo , Animais , Aquaporina 1/genética , Líquidos Corporais/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Cobaias , Humanos , Técnicas In Vitro , Ductos Pancreáticos/efeitos dos fármacos , Quinolizinas/farmacologia , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Análise de Sequência de ProteínaRESUMO
Chloride absorption and bicarbonate secretion are vital functions of epithelia, as highlighted by cystic fibrosis and diseases associated with mutations in members of the SLC26 chloride-bicarbonate exchangers. Many SLC26 transporters (SLC26T) are expressed in the luminal membrane together with CFTR, which activates electrogenic chloride-bicarbonate exchange by SLC26T. However, the ability of SLC26T to regulate CFTR and the molecular mechanism of their interaction are not known. We report here a reciprocal regulatory interaction between the SLC26T DRA, SLC26A6 and CFTR. DRA markedly activates CFTR by increasing its overall open probablity (NP(o)) sixfold. Activation of CFTR by DRA was facilitated by their PDZ ligands and binding of the SLC26T STAS domain to the CFTR R domain. Binding of the STAS and R domains is regulated by PKA-mediated phosphorylation of the R domain. Notably, CFTR and SLC26T co-localize in the luminal membrane and recombinant STAS domain activates CFTR in native duct cells. These findings provide a new understanding of epithelial chloride and bicarbonate transport and may have important implications for both cystic fibrosis and diseases associated with SLC26T.
Assuntos
Antiporters , Bicarbonatos/metabolismo , Proteínas de Transporte/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Cloretos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ativação do Canal Iônico/genética , Ligantes , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Transportadores de Sulfato , Equilíbrio Hidroeletrolítico/genéticaRESUMO
Gaucher disease, the most prevalent metabolic storage disorder, is caused by mutations in the glucocerebrosidase gene GBA1, which lead to the accumulation of glucosylceramide (GlcCer) in affected cells. Gaucher disease type 1 (GD1), although defined as a nonneuronopathic subtype, is accompanied by an increased risk of Parkinson's disease. To gain insights into the association of progressive accumulation of GlcCer and the Parkinson's disease phenotypes, we generated dopaminergic (DA) neurons from induced pluripotent stem cells (iPSCs) derived from a GD1 patient and a healthy donor control, and measured GlcCer accumulation by liquid chromatography-mass spectrometry. We tested two DA neuron differentiation methods: a well-established method that mimics a step-wise developmental process from iPSCs to neural progenitor cells, and to DA neurons; and a synthetic mRNA-based method that overexpresses a transcription factor in iPSCs. GD1-specific accumulation of GlcCer was detected after 60 days of differentiation by the former method, whereas it was detected after only 10 days by the latter method. With this synthetic mRNA-based rapid differentiation method, we found that the metabolic defect in GD1 patient cells can be rescued by the overexpression of wild-type GBA1 or the treatment with an inhibitor for GlcCer synthesis. Furthermore, we detected the increased phosphorylation of α-synuclein, a biomarker for Parkinson's disease, in DA neurons derived from a GD1 patient, which was significantly decreased by the overexpression of wild-type GBA1. These results suggest that synthetic mRNA-based method accelerates the analyses of the pathological mechanisms of Parkinson's disease in GD1 patients and possibly facilitates drug discovery processes.
Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , RNA Mensageiro , Neurônios Dopaminérgicos/citologia , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Parkinson/genética , Fenótipo , RNA Mensageiro/genéticaRESUMO
The overall effect of lifestyle habits, such as alcohol consumption, on general health remains controversial and it is important to clarify how such habits affect aging-related health impairments. To discover novel impacts of lifestyle on general health, we employed a mathematical approach to perform a comprehensive, unbiased, cross-sectional analysis of data from 6036 subjects who participated in a Japanese health checkup. Notably, we found that moderate alcohol consumption was positively correlated with lung function, muscle mass, and strength. Health checkup data were collected periodically from the same subjects. These people were light to moderate drinkers who had high health awareness and were basically free of major underlying diseases. We next analyzed 5 years of data from 1765 of these subjects. We found that higher baseline alcohol consumption, as well as increased alcohol intake over 5 years attenuated time-related deterioration of forced vital capacity without affecting total lung volume. This effect was independent of smoking. Our study suggests a possible protective effect of moderate amounts of alcohol on lung function, due to increased muscle mass/strength and forced vital capacity.