Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Virol ; : e0124223, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012096

RESUMO

Sudan ebolavirus (SUDV) is a member of the genus Ebolavirus (Family Filoviridae) and has caused sporadic outbreaks of Ebola disease (EBOD), or more specifically Sudan virus disease (SVD), with high mortality rates in Africa. Current vaccines and therapies that have been developed for filoviruses are almost all specific for Ebola virus (EBOV; of the species Zaire ebolavirus), and there is a current lack of therapeutics specific for SUDV. The recent SUDV outbreak in Uganda, which was distributed across multiple districts, including Kampala, a densely populated urban center, highlights the critical need for the development of novel SUDV-specific or pan-Ebola virus therapeutics. Previous work has characterized two monoclonal antibodies, FVM04 and CA45, which have neutralization capabilities against both EBOV and SUDV and have shown protective efficacy in animal challenge studies. Here, we expand upon this work, showing that treatment with a monoclonal antibody cocktail consisting of FVM04 and CA45 provides full protection against lethal SUDV infection in cynomolgus macaques. Studies that evaluate outcomes at late time points after infection, once clinical signs of illness are apparent, are vital for assessing the therapeutic efficacy of antibody therapeutics. We have shown that when treatment is initiated as late as 5 days after infection, with a second dose given on day 8, that treated groups showed few clinical signs or morbidity, with complete survival. This work provides further evidence that FVM04 and CA45 have strong therapeutic potential against SUDV and their development as a pan-Ebola virus therapeutic should be pursued. IMPORTANCE: There are currently no approved vaccines or therapeutics for Sudan virus, a filovirus which is highly related to Ebola virus and causes similar disease and outbreaks. In this study, a cocktail of two potent monoclonal antibodies that effectively neutralize Sudan virus was tested in a nonhuman primate model of Sudan virus disease. Treatment was highly effective, even when initiated as late as 5 days after infection, when clinical signs of infection were already evident. All treated animals showed complete recovery from infection, with little evidence of disease, while all animals that received a control treatment succumbed to infection within 8 days. The study further demonstrated the strong therapeutic potential of the antibody treatment and supported further development for use in Sudan virus outbreaks.

2.
J Immunol ; 209(1): 118-127, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750334

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Assuntos
COVID-19 , Vacinas Virais , Adenosina Desaminase/genética , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2
3.
J Virol ; 96(18): e0133722, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069551

RESUMO

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Vacinas Combinadas , Estomatite Vesicular , Aminoácidos/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Cricetinae , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/genética , Vesiculovirus/imunologia
4.
J Virol ; 96(9): e0038922, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412347

RESUMO

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with current spike protein-based COVID-19 vaccines highlight the need to develop alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins based on a novel vaccinia virus (VACV) ACAM2000 platform (rACAM2000). In this platform, the vaccinia virus host range and immunoregulatory gene E3L was deleted to make the virus attenuated and to enhance innate immune responses, and another host range gene, K3L, was replaced with a poxvirus ortholog gene, taterapox virus 037 (TATV037), to make virus replication competent in both hamster and human cells. Following a single intramuscular immunization, the rACAM2000 coexpressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and shorter recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titer, and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate, and further studies will investigate if the rACAM2000 vaccine candidate can induce a long-lasting immunity against infection by SARS-CoV-2 variants of concern. IMPORTANCE Continuous emergence of SARS-CoV-2 variants which cause breakthrough infection from the immunity induced by current spike protein-based COVID-19 vaccines highlights the need for new generations of vaccines that will induce long-lasting immunity against a wide range of the variants. To this end, we investigated the protective efficacy of the recombinant COVID-19 vaccine candidates based on a novel VACV ACAM2000 platform, in which an immunoregulatory gene, E3L, was deleted and both the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens were expressed. Thus, it is expected that the vaccine candidate we constructed should be more immunogenic and safer. In the initial study described in this work, we demonstrated that the vaccine candidate expressing both the S and N proteins is superior to the constructs expressing an individual protein (S or N) in protecting hamsters against SARS-CoV-2 challenge after a single-dose immunization, and further investigation against different SARS-CoV-2 variants will warrant future clinical evaluations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Proteínas do Nucleocapsídeo de Coronavírus , Cricetinae , Humanos , Imunização , Proteínas do Nucleocapsídeo/imunologia , Fosfoproteínas , SARS-CoV-2 , Vacina Antivariólica , Glicoproteína da Espícula de Coronavírus/imunologia , Vaccinia virus
5.
J Virol ; 96(16): e0072822, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924920

RESUMO

The 1918 H1N1 influenza pandemic was among the most severe in history, taking the lives of approximately 50 million people worldwide, and novel prophylactic vaccines are urgently needed to prevent another pandemic. Given that macaques are physiologically relevant preclinical models of human immunology that have advanced the clinical treatment of infectious diseases, a lethal pandemic influenza challenge model would provide a stringent platform for testing new influenza vaccine concepts. To this end, we infected rhesus macaques and Mauritian cynomolgus macaques with highly pathogenic 1918 H1N1 influenza virus and assessed pathogenesis and disease severity. Despite infection with a high dose of 1918 influenza delivered via multiple routes, rhesus macaques demonstrated minimal signs of disease, with only intermittent viral shedding. Cynomolgus macaques infected via intrabronchial instillation demonstrated mild symptoms, with disease severity depending on the infection dose. Cynomolgus macaques infected with a high dose of 1918 influenza delivered via multiple routes experienced moderate disease characterized by consistent viral shedding, pulmonary infiltrates, and elevated inflammatory cytokine levels. However, 1918 influenza was uniformly nonlethal in these two species, demonstrating that this isolate is insufficiently pathogenic in rhesus and Mauritian cynomolgus macaques to support testing novel prophylactic influenza approaches where protection from severe disease combined with a lethal outcome is desired as a highly stringent indication of vaccine efficacy. IMPORTANCE The world remains at risk of an influenza pandemic, and the development of new therapeutic and preventative modalities is critically important for minimizing human death and suffering during the next influenza pandemic. Animal models are central to the development of new therapies and vaccine approaches. In particular, nonhuman primates like rhesus and cynomolgus macaques are highly relevant preclinical models given their physiological and immunological similarities to humans. Unfortunately, there remains a scarcity of macaque models of pandemic influenza with which to test novel antiviral modalities. Here, we demonstrate that even at the highest doses tested, 1918 influenza was not lethal in these two macaque species, suggesting that they are not ideal for the development and testing of novel pandemic influenza-specific vaccines and therapies. Therefore, other physiologically relevant nonhuman primate models of pandemic influenza are needed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Macaca fascicularis , Macaca mulatta
6.
PLoS Pathog ; 17(1): e1009275, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513206

RESUMO

Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Chlorocebus aethiops , Ebolavirus/genética , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Humanos , Espaço Intracelular/virologia , Lisossomos/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/genética , Células Vero , Vírion , Internalização do Vírus , Replicação Viral
7.
PLoS Pathog ; 17(10): e1009966, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634087

RESUMO

Nigeria continues to experience ever increasing annual outbreaks of Lassa fever (LF). The World Health Organization has recently declared Lassa virus (LASV) as a priority pathogen for accelerated research leading to a renewed international effort to develop relevant animal models of disease and effective countermeasures to reduce LF morbidity and mortality in endemic West African countries. A limiting factor in evaluating medical countermeasures against LF is a lack of well characterized animal models outside of those based on infection with LASV strain Josiah originating form Sierra Leone, circa 1976. Here we genetically characterize five recent LASV isolates collected from the 2018 outbreak in Nigeria. Three isolates were further evaluated in vivo and despite being closely related and from the same spatial / geographic region of Nigeria, only one of the three isolates proved lethal in strain 13 guinea pigs and non-human primates (NHP). Additionally, this isolate exhibited atypical pathogenesis characteristics in the NHP model, most notably respiratory failure, not commonly described in hemorrhagic cases of LF. These results suggest that there is considerable phenotypic heterogeneity in LASV infections in Nigeria, which leads to a multitude of pathogenesis characteristics that could account for differences between subclinical and lethal LF infections. Most importantly, the development of disease models using currently circulating LASV strains in West Africa are critical for the evaluation of potential vaccines and medical countermeasures.


Assuntos
Modelos Animais de Doenças , Febre Lassa/genética , Vírus Lassa/genética , Animais , Surtos de Doenças , Feminino , Cobaias , Humanos , Macaca fascicularis , Masculino , Nigéria , Filogenia
8.
Emerg Infect Dis ; 28(9): 1882-1885, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997624

RESUMO

We demonstrate that 6 distinct Peromyscus rodent species are permissive to experimental infection with Sin Nombre orthohantavirus (SNV). Viral RNA and SNV antibodies were detected in members of all 6 species. P. leucopus mice demonstrated markedly higher viral and antibody titers than P. maniculatus mice, the established primary hosts for SNV.


Assuntos
Síndrome Pulmonar por Hantavirus , Doenças dos Roedores , Vírus Sin Nombre , Animais , Anticorpos Antivirais , Peromyscus , RNA Viral , Doenças dos Roedores/epidemiologia , Roedores , Vírus Sin Nombre/genética
9.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33627395

RESUMO

Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory disease caused by orthohantaviruses in the Americas with a fatality rate as high as 35%. In South America, Andes orthohantavirus (Hantaviridae, Orthohantavirus, ANDV) is a major cause of HCPS, particularly in Chile and Argentina, where thousands of cases have been reported since the virus was discovered. Two strains of ANDV that are classically used for experimental studies of the virus are Chile-9717869, isolated from the natural reservoir, the long-tailed pygmy rice rat, and CHI-7913, an isolate from a lethal human case of HCPS. An important animal model for studying pathogenesis of HCPS is the lethal Syrian golden hamster model of ANDV infection. In this model, ANDV strain Chile-9717869 is uniformly lethal and has been used extensively for pathogenesis, vaccination, and therapeutic studies. Here we show that the CHI-7913 strain, despite having high sequence similarity with Chile-9717869, does not cause lethal disease in Syrian hamsters. CHI-7913, while being able to infect hamsters and replicate to moderate levels, showed a reduced ability to replicate within the tissues compared with Chile-9717869. Hamsters infected with CHI-7913 had reduced expression of cytokines IL-4, IL-6, and IFN-γ compared with Chile-9717869 infected animals, suggesting potentially limited immune-mediated pathology. These results demonstrate that certain ANDV strains may not be lethal in the classical Syrian hamster model of infection, and further exploration into the differences between lethal and non-lethal strains provide important insights into molecular determinants of pathogenic hantavirus infection.Importance:Andes orthohantavirus (ANDV) is a New World hantavirus that is a major cause of hantavirus cardiopulmonary syndrome (HCPS, also referred to as hantavirus pulmonary syndrome) in South America, particularly in Chile and Argentina. ANDV is one of the few hantaviruses for which there is a reliable animal model, the Syrian hamster model, which recapitulates important aspects of human disease. Here we infected hamsters with a human isolate of ANDV, CHI-7913, to assess its pathogenicity compared with the classical lethal Chile-9717869 strain. CHI-7913 had 22 amino acid differences compared with Chile-9717869, did not cause lethal disease in hamsters, and showed reduced ability to replicate in vivo Our data indicate potentially important molecular signatures for pathogenesis of ANDV infection in hamsters and may lead to insights into what drives pathogenesis of certain hantaviruses in humans.

10.
Emerg Infect Dis ; 26(12): 3020-3024, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219792

RESUMO

Hantavirus cardiopulmonary syndrome (HCPS) is a severe respiratory disease caused by Sin Nombre virus in North America (SNV). As of January 1, 2020, SNV has caused 143 laboratory-confirmed cases of HCPS in Canada. We review critical aspects of SNV virus epidemiology and the ecology, biology, and genetics of HCPS in Canada.


Assuntos
Infecções por Hantavirus , Síndrome Pulmonar por Hantavirus , Orthohantavírus , Vírus Sin Nombre , Canadá/epidemiologia , Orthohantavírus/genética , Infecções por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/diagnóstico , Síndrome Pulmonar por Hantavirus/epidemiologia , Humanos , América do Norte
11.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30333174

RESUMO

Sequencing of Ebola virus (EBOV) genomes during the 2014-2016 epidemic identified several naturally occurring, dominant mutations potentially impacting virulence or tropism. In this study, we characterized EBOV variants carrying one of the following substitutions: A82V in the glycoprotein (GP), R111C in the nucleoprotein (NP), or D759G in the RNA-dependent RNA polymerase (L). Compared with the wild-type (WT) EBOV C07 isolate, NP and L mutants conferred a replication advantage in monkey Vero E6, human A549, and insectivorous bat Tb1.Lu cells, while L mutants displayed a disadvantage in human Huh7 cells. The replication of the GP mutant was significantly delayed in Tb1.Lu cells and similar to that of the WT in other cells. The L mutant was less virulent, as evidenced by increased survival for mice and a significantly delayed time to death for ferrets, but increased lengths of the period of EBOV shedding may have contributed to the prolonged epidemic. Our results show that single substitutions can have observable impacts on EBOV pathogenicity and provide a framework for the study of other mutations.IMPORTANCE During the Ebola virus (EBOV) disease outbreak in West Africa in 2014-2016, it was discovered that several mutations in the virus emerged and became prevalent in the human population. This suggests that these mutations may play a role impacting viral fitness. We investigated three of these previously identified mutations (in the glycoprotein [GP], nucleoprotein [NP], or RNA-dependent RNA polymerase [L]) in cell culture, as well as in mice and ferrets, by generating recombinant viruses (based on an early West African EBOV strain) each carrying one of these mutations. The NP and L mutations appear to decrease virulence, whereas the GP mutation slightly increases virulence but mainly impacts viral tropism. Our results show that these single mutations can impact EBOV virulence in animals and have implications for the rational design of efficacious antiviral therapies against these infections.


Assuntos
Substituição de Aminoácidos , Ebolavirus/fisiologia , Ebolavirus/patogenicidade , Proteínas Virais/genética , Células A549 , Animais , Linhagem Celular , Quirópteros , Chlorocebus aethiops , Ebolavirus/genética , Humanos , Células Vero , Virulência , Replicação Viral , Eliminação de Partículas Virais
12.
J Infect Dis ; 218(suppl_5): S603-S611, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29955852

RESUMO

Background: Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods: Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results: Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions: This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Animais , Proteção Cruzada , Reações Cruzadas , Feminino , Cobaias , Cavalos , Masculino
13.
J Infect Dis ; 218(suppl_5): S466-S470, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29878131

RESUMO

During 2013-2016, a novel isolate of Ebola virus (EBOV-Makona) caused an epidemic in West Africa. The virus was distinct from known EBOV strains (EBOV-Kikwit and EBOV-Mayinga), which were responsible for previous outbreaks in Central Africa. To investigate the pathogenicity of EBOV-Makona, we engineered and rescued an early isolate (H.sapiens-wt/GIN/2014/Makona-Gueckedou-C07, called rgEBOV-C07) using an updated reverse-genetics system. rgEBOV-C07 was found to be highly pathogenic in both the knockout mouse and ferret models, with median lethal dose values of 0.078 and 0.015 plaque-forming units, respectively. Therefore, these animals are appropriate for screening potential countermeasures against EBOV-Makona without the need for species adaptation.


Assuntos
Ebolavirus/patogenicidade , Animais , Ebolavirus/genética , Feminino , Furões , Imunocompetência , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Knockout
14.
J Virol ; 90(21): 9931-9941, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558428

RESUMO

During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE: Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/metabolismo , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/epidemiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Furões/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacologia , Pandemias , Suínos , Virulência/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 90(1): 392-9, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491156

RESUMO

UNLABELLED: Infections with Sudan virus (SUDV), a member of the genus Ebolavirus, result in a severe hemorrhagic fever with a fatal outcome in over 50% of human cases. The paucity of prophylactics and therapeutics against SUDV is attributed to the lack of a small-animal model to screen promising compounds. By repeatedly passaging SUDV within the livers and spleens of guinea pigs in vivo, a guinea pig-adapted SUDV variant (SUDV-GA) uniformly lethal to these animals, with a 50% lethal dose (LD50) of 5.3 × 10(-2) 50% tissue culture infective doses (TCID50), was developed. Animals infected with SUDV-GA developed high viremia and died between 9 and 14 days postinfection. Several hallmarks of SUDV infection, including lymphadenopathy, increased liver enzyme activities, and coagulation abnormalities, were observed. Virological analyses and gross pathology, histopathology, and immunohistochemistry findings indicate that SUDV-GA replicates in the livers and spleens of infected animals similarly to SUDV infections in nonhuman primates. These developments will accelerate the development of specific medical countermeasures in preparation for a future disease outbreak due to SUDV. IMPORTANCE: A disease outbreak due to Ebola virus (EBOV), suspected to have emerged during December 2013 in Guinea, with over 11,000 dead and 28,000 infected, is finally winding down. Experimental EBOV vaccines and treatments were administered to patients under compassionate circumstances with promising results, and availability of an approved countermeasure appears to be close. However, the same range of experimental candidates against a potential disease outbreak caused by other members of the genus Ebolavirus, such as Sudan virus (SUDV), is not readily available. One bottleneck contributing to this situation is the lack of a small-animal model to screen promising drugs in an efficient and economical manner. To address this, we have generated a SUDV variant (SUDV-GA) that is uniformly lethal to guinea pigs. Animals infected with SUDV-GA develop disease similar to that of SUDV-infected humans and monkeys. We believe that this model will significantly accelerate the development of life-saving measures against SUDV infections.


Assuntos
Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Adaptação Biológica , Animais , Ebolavirus/patogenicidade , Cobaias , Dose Letal Mediana , Fígado/patologia , Fígado/virologia , Baço/patologia , Baço/virologia , Análise de Sobrevida
16.
J Virol ; 89(21): 10724-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246579

RESUMO

UNLABELLED: Although a polybasic HA0 cleavage site is considered the dominant virulence determinant for highly pathogenic avian influenza (HPAI) H5 and H7 viruses, naturally occurring virus isolates possessing a polybasic HA0 cleavage site have been identified that are low pathogenic in chickens. In this study, we generated a reassortant H5N3 virus that possessed the hemagglutinin (HA) gene from H5N1 HPAI A/swan/Germany/R65/2006 and the remaining gene segments from low pathogenic A/chicken/British Columbia/CN0006/2004 (H7N3). Despite possessing the HA0 cleavage site GERRRKKR/GLF, this rH5N3 virus exhibited a low pathogenic phenotype in chickens. Although rH5N3-inoculated birds replicated and shed virus and seroconverted, transmission to naive contacts did not occur. To determine whether this virus could evolve into a HPAI form, it underwent six serial passages in chickens. A progressive increase in virulence was observed with the virus from passage number six being highly transmissible. Whole-genome sequencing demonstrated the fixation of 12 nonsynonymous mutations involving all eight gene segments during passaging. One of these involved the catalytic site of the neuraminidase (NA; R293K) and is associated with decreased neuraminidase activity and resistance to oseltamivir. Although introducing the R293K mutation into the original low-pathogenicity rH5N3 increased its virulence, transmission to naive contact birds was inefficient, suggesting that one or more of the remaining changes that had accumulated in the passage number six virus also play an important role in transmissibility. Our findings show that the functional linkage and balance between HA and NA proteins contributes to expression of the HPAI phenotype. IMPORTANCE: To date, the contribution that hemagglutinin-neuraminidase balance can have on the expression of a highly pathogenic avian influenza virus phenotype has not been thoroughly examined. Reassortment, which can result in new hemagglutinin-neuraminidase combinations, may have unpredictable effects on virulence and transmission characteristics of a virus. Our data show the importance of the neuraminidase in complementing a polybasic HA0 cleavage site. Furthermore, it demonstrates that adaptive changes selected for during the course of virus evolution can result in unexpected traits such as antiviral drug resistance.


Assuntos
Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Neuraminidase/metabolismo , Vírus Reordenados/genética , Animais , Sequência de Bases , Cães , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3/genética , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mutação/genética , Neuraminidase/genética , Oseltamivir , Análise de Sequência de DNA , Ensaio de Placa Viral , Virulência
17.
J Proteome Res ; 14(11): 4511-23, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26381135

RESUMO

Influenza A viruses (IAV) are important human and animal pathogens with potential for causing pandemics. IAVs exhibit a wide spectrum of clinical illness in humans, from relatively mild infections by seasonal strains to acute respiratory distress syndrome during infections with some highly pathogenic avian influenza (HPAI) viruses. In the present study, we infected A549 human cells with seasonal H1N1 (sH1N1), 2009 pandemic H1N1 (pdmH1N1), or novel H7N9 and HPAI H5N1 strains. We used multiplexed isobaric tags for relative and absolute quantification to measure proteomic host responses to these different strains at 1, 3, and 6 h post-infection. Our analyses revealed that both H7N9 and H5N1 strains induced more profound changes to the A549 global proteome compared to those with low-pathogenicity H1N1 virus infection, which correlates with the higher pathogenicity these strains exhibit at the organismal level. Bioinformatics analysis revealed important modulation of the nuclear factor erythroid 2-related factor 2 (NRF2) oxidative stress response in infection. Cellular fractionation and Western blotting suggested that the phosphorylated form of NRF2 is not imported to the nucleus in H5N1 and H7N9 virus infections. Fibronectin was also strongly inhibited in infection with H5N1 and H7N9 strains. This is the first known comparative proteomic study of the host response to H7N9, H5N1, and H1N1 viruses and the first time NRF2 is shown to be implicated in infection with highly pathogenic strains of influenza.


Assuntos
Células Epiteliais/metabolismo , Fibronectinas/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Fator 2 Relacionado a NF-E2/genética , Proteoma/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Biologia Computacional/métodos , Citosol/metabolismo , Citosol/virologia , Células Epiteliais/virologia , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosforilação , Transporte Proteico , Proteoma/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Transdução de Sinais , Virulência
18.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38812326

RESUMO

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Raios Ultravioleta , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos , Humanos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Vacinas de Produtos Inativados/imunologia
19.
Heliyon ; 10(11): e32140, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882312

RESUMO

The anti-viral properties of a small (≈1 kDa), novel Ru(II) photo dynamic compound (PDC), referred to as TLD-1433 (Ruvidar™), are presented. TLD-1433 had previously been demonstrated to exert strong anti-bacterial and anti-cancer properties. We evaluated the capacity of TLD-1433 to inactivate several human pathogenic viruses. TLD-1433 that was not photo-activated was capable of effectively inactivating 50 % of influenza H1N1 virus (ID50) at a concentration of 117 nM. After photo-activation, the ID50 was reduced to <10 nM. The dose of photo-activated TLD-1433 needed to reduce H1N1 infectivity >99 % (ID99) was approximately 170 nM. Similarly, the ID99 of photo-activated TLD-1433 was determined to range from about 20 to 120 nM for other tested enveloped viruses; specifically, a human coronavirus, herpes simplex virus, the poxvirus Vaccinia virus, and Zika virus. TLD-1433 also inactivated two tested non-enveloped viruses; specifically, adenovirus type 5 and mammalian orthoreovirus, but at considerably higher concentrations. Analyses of TLD-1433-treated membranes suggested that lipid peroxidation was a major contributor to enveloped virus inactivation. TLD-1433-mediated virus inactivation was temperature-dependent, with approximately 10-fold more efficient virucidal activity when viruses were treated at 37 °C than when treated at room temperature (∼22 °C). The presence of fetal bovine serum and virus solution turbidity reduced TLD-1433-mediated virucidal efficiency. Immunoblots of TLD-1433-treated human coronavirus indicated the treated spike protein remained particle-associated.

20.
NPJ Vaccines ; 9(1): 90, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782986

RESUMO

The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA