Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 146(4): 1086-1098, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31286496

RESUMO

Ovarian cancer exhibits the highest mortality rate among gynecological malignancies. Antimitotic agents, such as paclitaxel, are frontline drugs for the treatment of ovarian cancer. They inhibit microtubule dynamics and their efficiency relies on a prolonged mitotic arrest and the strong activation of the spindle assembly checkpoint (SAC). Although ovarian cancers respond well to paclitaxel, the clinical efficacy is limited due to an early onset of drug resistance, which may rely on a compromised mitosis exit associated with weakend intrinsic apoptosis. Accordingly, we aimed at overcoming SAC silencing that occurs rapidly during paclitaxel-induced mitotic arrest. To do this, we used a specific anaphase-promoting complex/cyclosome (APC/C) inhibitor to prevent a premature mitotic exit upon paclitaxel treatment. Furthermore, we investigated the role of the antiapoptotic BCL-2 family member MCL-1 in determining the fate of ovarian cancer cells lines with CCNE1 amplification that are challenged with clinically relevant dose of paclitaxel. Using time-laps microscopy, we demonstrated that APC/C and MCL-1 inhibition under paclitaxel prevents mitotic slippage in ovarian cancer cell lines and restores death in mitosis. Consistent with this, the combinatorial treatment reduced the survival of ovarian cancer cells in 2D and 3D cell models. Since a therapeutic ceiling has been reached with taxanes, it is of utmost importance to develop alternative strategies to improve the patient's survival. Thus, our study provides not only elements to understand the causes of taxane resistance in CCNE1-amplified ovarian cancers but also suggests a new combinatorial strategy that may improve paclitaxel-based efficacy in this highly lethal gynecological disease.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclina E/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Ciclina E/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Amplificação de Genes , Humanos , Mitose/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Gradação de Tumores , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
2.
Int J Bipolar Disord ; 12(1): 15, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703295

RESUMO

BACKGROUND: BIPCOM aims to (1) identify medical comorbidities in people with bipolar disorder (BD); (2) examine risk factors and clinical profiles of Medical Comorbidities (MC) in this clinical group, with a special focus on Metabolic Syndrome (MetS); (3) develop a Clinical Support Tool (CST) for the personalized management of BD and medical comorbidities. METHODS: The BIPCOM project aims to investigate MC, specifically MetS, in individuals with BD using various approaches. Initially, prevalence rates, characteristics, genetic and non-genetic risk factors, and the natural progression of MetS among individuals with BD will be assessed by analysing Nordic registers, biobanks, and existing patient datasets from 11 European recruiting centres across 5 countries. Subsequently, a clinical study involving 400 participants from these sites will be conducted to examine the clinical profiles and incidence of specific MetS risk factors over 1 year. Baseline assessments, 1-year follow-ups, biomarker analyses, and physical activity measurements with wearable biosensors, and focus groups will be performed. Using this comprehensive data, a CST will be developed to enhance the prevention, early detection, and personalized treatment of MC in BD, by incorporating clinical, biological, sex and genetic information. This protocol will highlight the study's methodology. DISCUSSION: BIPCOM's data collection will pave the way for tailored treatment and prevention approaches for individuals with BD. This approach has the potential to generate significant healthcare savings by preventing complications, hospitalizations, and emergency visits related to comorbidities and cardiovascular risks in BD. BIPCOM's data collection will enhance BD patient care through personalized strategies, resulting in improved quality of life and reduced costly interventions. The findings of the study will contribute to a better understanding of the relationship between medical comorbidities and BD, enabling accurate prediction and effective management of MetS and cardiovascular diseases. TRIAL REGISTRATION: ISRCTN68010602 at https://www.isrctn.com/ISRCTN68010602 . Registration date: 18/04/2023.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA