Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925888

RESUMO

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
2.
J Mol Cell Cardiol ; 63: 69-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863340

RESUMO

It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered. For analysis of the SL dependence of active force, skinned muscle preparations were obtained from the left ventricle of WT and knock-in (ΔK210) mice. An increase in SL from 1.90 to 2.20µm shifted the mid-point (pCa50) of the force-pCa curve leftward by ~0.21pCa units in WT preparations. In ΔK210 muscles, Ca(2+) sensitivity was lower by ~0.37pCa units, and the SL-dependent shift of pCa50, i.e., ΔpCa50, was less pronounced (~0.11pCa units), with and without protein kinase A treatment. The rate of active force redevelopment was lower in ΔK210 preparations than in WT preparations, showing blunted thin filament cooperative activation. An increase in thin filament cooperative activation upon an increase in the fraction of strongly bound cross-bridges by MgADP increased ΔpCa50 to ~0.21pCa units. The depressed Frank-Starling mechanism in ΔK210 hearts is the result of a reduction in thin filament cooperative activation.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Deleção de Sequência , Troponina T/genética , Difosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Troponina T/metabolismo
3.
J Gen Physiol ; 155(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37870863

RESUMO

Contraction of striated muscles is initiated by an increase in cytosolic Ca2+ concentration, which is regulated by tropomyosin and troponin acting on actin filaments at the sarcomere level. Namely, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" state, promoting actomyosin interaction; likewise, an increase in temperature to within the body temperature range shifts the equilibrium to the on state, even in the absence of Ca2+. Here, we investigated the temperature dependence of sarcomere shortening along isolated fast skeletal myofibrils using optical heating microscopy. Rapid heating (25 to 41.5°C) within 2 s induced reversible sarcomere shortening in relaxing solution. Further, we investigated the temperature-dependence of the sliding velocity of reconstituted fast skeletal or cardiac thin filaments on fast skeletal or ß-cardiac myosin in an in vitro motility assay within the body temperature range. We found that (a) with fast skeletal thin filaments on fast skeletal myosin, the temperature dependence was comparable to that obtained for sarcomere shortening in fast skeletal myofibrils (Q10 ∼8), (b) both types of thin filaments started to slide at lower temperatures on fast skeletal myosin than on ß-cardiac myosin, and (c) cardiac thin filaments slid at lower temperatures compared with fast skeletal thin filaments on either type of myosin. Therefore, the mammalian striated muscle may be fine-tuned to contract efficiently via complementary regulation of myosin and tropomyosin-troponin within the body temperature range, depending on the physiological demands of various circumstances.


Assuntos
Tropomiosina , Troponina , Animais , Cálcio , Actinas , Miosinas/fisiologia , Músculo Esquelético , Miosinas Cardíacas , Mamíferos
4.
J Biomed Biotechnol ; 2012: 313814, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570526

RESUMO

We here review the use of quantum dots (QDs) for the imaging of sarcomeric movements in cardiac muscle. QDs are fluorescence substances (CdSe) that absorb photons and reemit photons at a different wavelength (depending on the size of the particle); they are efficient in generating long-lasting, narrow symmetric emission profiles, and hence useful in various types of imaging studies. Recently, we developed a novel system in which the length of a particular, single sarcomere in cardiomyocytes can be measured at ~30 nm precision. Moreover, our system enables accurate measurement of sarcomere length in the isolated heart. We propose that QDs are the ideal tool for the study of sarcomere dynamics during excitation-contraction coupling in healthy and diseased cardiac muscle.


Assuntos
Miocárdio/ultraestrutura , Pontos Quânticos , Sarcômeros/química , Animais , Camundongos , Imagem Molecular/métodos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Sarcômeros/metabolismo
5.
Front Physiol ; 13: 947206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082222

RESUMO

Omecamtiv mecarbil (OM) is a novel inotropic agent for heart failure with systolic dysfunction. OM prolongs the actomyosin attachment duration, which enhances thin filament cooperative activation and accordingly promotes the binding of neighboring myosin to actin. In the present study, we investigated the effects of OM on the steady-state contractile properties in skinned porcine left ventricular (PLV) and atrial (PLA) muscles. OM increased Ca2+ sensitivity in a concentration-dependent manner in PLV, by left shifting the mid-point (pCa50) of the force-pCa curve (ΔpCa50) by ∼0.16 and ∼0.33 pCa units at 0.5 and 1.0 µM, respectively. The Ca2+-sensitizing effect was likewise observed in PLA, but less pronounced with ΔpCa50 values of ∼0.08 and ∼0.22 pCa units at 0.5 and 1.0 µM, respectively. The Ca2+-sensitizing effect of OM (1.0 µM) was attenuated under enhanced thin filament cooperative activation in both PLV and PLA; this attenuation occurred directly via treatment with fast skeletal troponin (ΔpCa50: ∼0.16 and ∼0.10 pCa units in PLV and PLA, respectively) and indirectly by increasing the number of strongly bound cross-bridges in the presence of 3 mM MgADP (ΔpCa50: ∼0.21 and ∼0.08 pCa units in PLV and PLA, respectively). It is likely that this attenuation of the Ca2+-sensitizing effect of OM is due to a decrease in the number of "recruitable" cross-bridges that can potentially produce active force. When cross-bridge detachment was accelerated in the presence of 20 mM inorganic phosphate, the Ca2+-sensitizing effect of OM (1.0 µM) was markedly decreased in both types of preparations (ΔpCa50: ∼0.09 and ∼0.03 pCa units in PLV and PLA, respectively). The present findings suggest that the positive inotropy of OM is more markedly exerted in the ventricle than in the atrium, which results from the strongly bound cross-bridge-dependent allosteric activation of thin filaments.

6.
J Gen Physiol ; 154(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36200983

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Hipertermia Maligna/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutação
7.
J Gen Physiol ; 153(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605861

RESUMO

Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions. It has generally been considered that in cardiac muscle as well as in skeletal muscle, sarcomeres equally contribute to myofibrillar dynamics in myocytes at varying loads by producing similar levels of active and passive force. In the present study, we expressed α-actinin-AcGFP in Z-disks to analyze dynamic behaviors of sequentially connected individual sarcomeres along a myofibril in a left ventricular (LV) myocyte of the in vivo beating mouse heart. To quantify the magnitude of the contribution of individual sarcomeres to myofibrillar dynamics, we introduced the novel parameter "contribution index" (CI) to measure the synchrony in movements between a sarcomere and a myofibril (from -1 [complete asynchrony] to 1 [complete synchrony]). First, CI varied markedly between sarcomeres, with an average value of ∼0.3 during normal systole. Second, when the movements between adjacent sarcomeres were asynchronous (CI < 0), a sarcomere and the ones next to the adjacent sarcomeres and farther away moved in synchrony (CI > 0) along a myofibril. Third, when difference in LV pressure in diastole and systole (ΔLVP) was lowered to <10 mm Hg, diastolic sarcomere length increased. Under depressed conditions, the movements between adjacent sarcomeres were in marked asynchrony (CI, -0.3 to -0.4), and, as a result, average CI was linearly decreased in association with a decrease in ΔLVP. These findings suggest that in the left ventricle of the in vivo beating mouse heart, (1) sarcomeres heterogeneously contribute to myofibrillar dynamics due to an imbalance of active and passive force between neighboring sarcomeres, (2) the force imbalance is pronounced under depressed conditions coupled with a marked increase in passive force and the ensuing tug-of-war between sarcomeres, and (3) sarcomere synchrony via the distal intersarcomere interaction regulates the heart's pump function in coordination with myofibrillar contractility.


Assuntos
Miofibrilas , Sarcômeros , Animais , Diástole , Camundongos , Contração Muscular , Miócitos Cardíacos
8.
Front Physiol ; 11: 278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372968

RESUMO

In skeletal and cardiac muscles, contraction is triggered by an increase in the intracellular Ca2+ concentration. During Ca2+ transients, Ca2+-binding to troponin C shifts the "on-off" equilibrium of the thin filament state toward the "on" sate, promoting actomyosin interaction. Likewise, recent studies have revealed that the thin filament state is under the influence of temperature; viz., an increase in temperature increases active force production. In this short review, we discuss the effects of temperature on the contractile performance of mammalian striated muscle at/around body temperature, focusing especially on the temperature-dependent shift of the "on-off" equilibrium of the thin filament state.

9.
Nanomaterials (Basel) ; 10(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188039

RESUMO

Myocardial contraction is initiated by action potential propagation through the conduction system of the heart. It has been thought that connexin 43 in the gap junctions (GJ) within the intercalated disc (ID) provides direct electric connectivity between cardiomyocytes (electronic conduction). However, recent studies challenge this view by providing evidence that the mechanosensitive cardiac sodium channels Nav1.5 localized in perinexii at the GJ edge play an important role in spreading action potentials between neighboring cells (ephaptic conduction). In the present study, we performed real-time confocal imaging of the CellMask-stained ID in the living mouse heart in vivo. We found that the ID structure was not rigid. Instead, we observed marked flexing of the ID during propagation of contraction from cell to cell. The variation in ID length was between ~30 and ~42 µm (i.e., magnitude of change, ~30%). In contrast, tracking of α-actinin-AcGFP revealed a comparatively small change in the lateral dimension of the transitional junction near the ID (i.e., magnitude of change, ~20%). The present findings suggest that, when the heart is at work, mechanostress across the perinexii may activate Nav1.5 by promoting ephaptic conduction in coordination with electronic conduction, and, thereby, efficiently transmitting excitation-contraction coupling between cardiomyocytes.

10.
J Gen Physiol ; 151(6): 860-869, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31010810

RESUMO

During the excitation-contraction coupling of the heart, sarcomeres are activated via thin filament structural changes (i.e., from the "off" state to the "on" state) in response to a release of Ca2+ from the sarcoplasmic reticulum. This process involves chemical reactions that are highly dependent on ambient temperature; for example, catalytic activity of the actomyosin ATPase rises with increasing temperature. Here, we investigate the effects of rapid heating by focused infrared (IR) laser irradiation on the sliding of thin filaments reconstituted with human α-tropomyosin and bovine ventricular troponin in an in vitro motility assay. We perform high-precision analyses measuring temperature by the fluorescence intensity of rhodamine-phalloidin-labeled F-actin coupled with a fluorescent thermosensor sheet containing the temperature-sensitive dye Europium (III) thenoyltrifluoroacetonate trihydrate. This approach enables a shift in temperature from 25°C to ∼46°C within 0.2 s. We find that in the absence of Ca2+ and presence of ATP, IR laser irradiation elicits sliding movements of reconstituted thin filaments with a sliding velocity that increases as a function of temperature. The heating-induced acceleration of thin filament sliding likewise occurs in the presence of Ca2+ and ATP; however, the temperature dependence is more than twofold less pronounced. These findings could indicate that in the mammalian heart, the on-off equilibrium of the cardiac thin filament state is partially shifted toward the on state in diastole at physiological body temperature, enabling rapid and efficient myocardial dynamics in systole.


Assuntos
Coração/fisiologia , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Temperatura Alta , Humanos , Miocárdio/metabolismo , Miosinas/metabolismo , Coelhos , Troponina/metabolismo
11.
Biomed Res Int ; 2018: 4349170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30211223

RESUMO

The present study was conducted to systematically investigate the optimal viral titer as well as the volume of the adenovirus vector (ADV) that expresses α-actinin-AcGFP in the Z-disks of myocytes in the left ventricle (LV) of mice. An injection of 10 µL ADV at viral titers of 2 to 4 × 1011 viral particles per mL (VP/mL) into the LV epicardial surface consistently expressed α-actinin-AcGFP in myocytes in vivo, with the fraction of AcGFP-expressing myocytes at ~10%. Our analysis revealed that SL was ~1.90-2.15 µm upon heart arrest via deep anesthesia. Likewise, we developed a novel fluorescence labeling method of the T-tubular system by treating the LV surface with CellMask Orange (CellMask). We found that the T-tubular distance was ~2.10-2.25 µm, similar to SL, in the healthy heart in vivo. Therefore, the present high-precision visualization method for the Z-disks or the T-tubules is beneficial to unveiling the mechanisms of myocyte contraction in health and disease in vivo.


Assuntos
Miócitos Cardíacos/fisiologia , Nanotecnologia , Sarcômeros/fisiologia , Actinina/metabolismo , Adenoviridae , Animais , Vetores Genéticos , Ventrículos do Coração , Camundongos
12.
Circ Heart Fail ; 11(7): e004333, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29980594

RESUMO

BACKGROUND: Left ventricular wall motion is depressed in patients with dilated cardiomyopathy (DCM). However, whether or not the depressed left ventricular wall motion is caused by impairment of sarcomere dynamics remains to be fully clarified. METHODS AND RESULTS: We analyzed the mechanical properties of single sarcomere dynamics during sarcomeric auto-oscillations (calcium spontaneous oscillatory contractions [Ca-SPOC]) that occurred at partial activation under the isometric condition in myofibrils from donor hearts and from patients with severe DCM (New York Heart Association classification III-IV). Ca-SPOC reproducibly occurred in the presence of 1 µmol/L free Ca2+ in both nonfailing and DCM myofibrils, and sarcomeres exhibited a saw-tooth waveform along single myofibrils composed of quick lengthening and slow shortening. The period of Ca-SPOC was longer in DCM myofibrils than in nonfailing myofibrils, in association with prolonged shortening time. Lengthening time was similar in both groups. Then, we performed Tn (troponin) exchange in myofibrils with a DCM-causing homozygous mutation (K36Q) in cTnI (cardiac TnI). On exchange with the Tn complex from healthy porcine ventricles, period, shortening time, and shortening velocity in cTnI-K36Q myofibrils became similar to those in Tn-reconstituted nonfailing myofibrils. Protein kinase A abbreviated period in both Tn-reconstituted nonfailing and cTnI-K36Q myofibrils, demonstrating acceleration of cross-bridge kinetics. CONCLUSIONS: Sarcomere dynamics was found to be depressed under loaded conditions in DCM myofibrils because of impairment of thick-thin filament sliding. Thus, microscopic analysis of Ca-SPOC in human cardiac myofibrils is beneficial to systematically unveil the kinetic properties of single sarcomeres in various types of heart disease.


Assuntos
Sinalização do Cálcio/fisiologia , Cardiomiopatia Dilatada/metabolismo , Insuficiência Cardíaca/metabolismo , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Adolescente , Adulto , Idoso , Cálcio/metabolismo , Cardiomiopatia Dilatada/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Adulto Jovem
13.
Prog Biophys Mol Biol ; 124: 31-40, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27664770

RESUMO

The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 µm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the µm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.


Assuntos
Imagem Molecular/métodos , Nanotecnologia/métodos , Sarcômeros/metabolismo , Animais , Cálcio/metabolismo , Humanos , Espaço Intracelular/metabolismo
14.
J Gen Physiol ; 148(4): 341-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27670899

RESUMO

In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via ß-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that ß-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.


Assuntos
Cálcio/metabolismo , Proteínas Luminescentes/fisiologia , Miócitos Cardíacos/citologia , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Animais Recém-Nascidos , Nanotecnologia , Ratos
15.
J Gen Physiol ; 147(1): 53-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26712849

RESUMO

Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.


Assuntos
Frequência Cardíaca/fisiologia , Ventrículos do Coração/fisiopatologia , Sarcômeros/fisiologia , Animais , Diástole/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio , Miócitos Cardíacos/fisiologia , Sístole/fisiologia
16.
J Gen Physiol ; 143(4): 513-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24638993

RESUMO

Nanometry is widely used in biological sciences to analyze the movement of molecules or molecular assemblies in cells and in vivo. In cardiac muscle, a change in sarcomere length (SL) by a mere ∼100 nm causes a substantial change in contractility, indicating the need for the simultaneous measurement of SL and intracellular Ca(2+) concentration ([Ca(2+)]i) in cardiomyocytes at high spatial and temporal resolution. To accurately analyze the motion of individual sarcomeres with nanometer precision during excitation-contraction coupling, we applied nanometry techniques to primary-cultured rat neonatal cardiomyocytes. First, we developed an experimental system for simultaneous nanoscale analysis of single sarcomere dynamics and [Ca(2+)]i changes via the expression of AcGFP in Z discs. We found that the averaging of the lengths of sarcomeres along the myocyte, a method generally used in today's myocardial research, caused marked underestimation of sarcomere lengthening speed because of the superpositioning of different timings for lengthening between sequentially connected sarcomeres. Then, we found that after treatment with ionomycin, neonatal myocytes exhibited spontaneous sarcomeric oscillations (cell-SPOCs) at partial activation with blockage of sarcoplasmic reticulum functions, and the waveform properties were indistinguishable from those obtained in electric field stimulation. The myosin activator omecamtiv mecarbil markedly enhanced Z-disc displacement during cell-SPOC. Finally, we interpreted the present experimental findings in the framework of our mathematical model of SPOCs. The present experimental system has a broad range of application possibilities for unveiling single sarcomere dynamics during excitation-contraction coupling in cardiomyocytes under various settings.


Assuntos
Actinina/biossíntese , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Nanotecnologia/métodos , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Animais , Animais Recém-Nascidos , Células Cultivadas , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Wistar
17.
J Physiol Sci ; 64(4): 221-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24788476

RESUMO

The heart has an intrinsic ability to increase systolic force in response to a rise in ventricular filling (the Frank-Starling law of the heart). It is widely accepted that the length dependence of myocardial activation underlies the Frank-Starling law of the heart. Recent advances in muscle physiology have enabled the identification of the factors involved in length-dependent activation, viz., titin (connectin)-based interfilament lattice spacing reduction and thin filament "on-off" regulation, with the former triggering length-dependent activation and the latter determining the number of myosin molecules recruited to thin filaments. Patients with a failing heart have demonstrated reduced exercise tolerance at least in part via depression of the Frank-Starling mechanism. Recent studies revealed that various mutations occur in the thin filament regulatory proteins, such as troponin, in the ventricular muscle of failing hearts, which consequently alter the Frank-Starling mechanism. In this article, we review the molecular mechanisms of length-dependent activation, and the influence of troponin mutations on the phenomenon.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Sarcômeros/metabolismo , Estorninhos/fisiologia , Animais , Miosinas Cardíacas/metabolismo , Conectina/metabolismo , Humanos , Troponina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA