Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Theor Chem ; 990: 214-221, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22666658

RESUMO

The physical explanation for the hydrophobic effect has been the subject of disagreement. Physical organic chemists tend to use a explanation related to pressure, while many biochemists prefer an explanation that involves decreased entropy of the aqueous solvent. We present DFT calculations at the B3LYP/6-31G(d,p) and X3LYP/6-31G(d,p) levels on the solvation of three noble gases (Ne, Ar, and Kr) in clusters of 50 waters. Vibrational analyses show no substantial decreases in the vibrational entropies of the waters in any of the three clusters. The observed positive free energies of transfer from the gas phase or from nonpolar solvents to water appear to be due to the work needed to make a suitable hole in the aqueous solvent. We distinguish between hydrophobic solvations (explicitly studied here) and the hydrophobic effect that occurs when a solute (or transition state) can decrease its volume through conformational change (which is not possible for the noble gases).

2.
J Am Chem Soc ; 126(43): 14190-7, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15506785

RESUMO

We report B3LYP DFT calculations on peptide models that consider the effects of cooperative interactions with proximate H-bonds and local geometry at the H-bonding site upon trans-H-bond (13)C-(15)N three-bond scalar J-couplings. The calculations predict that cooperative interactions with other H-bonds within a H-bonding chain can significantly increase the magnitude of these couplings. Such increases are due to a combination of the presence of the neighboring H-bonds and the slight increase in C=O distances expected for peptide H-bonds near the centers of H-bonding chains. The energies of H-bonds inferred from H-bonding distances, alone, could be significantly in error if the effects of neighboring H-bonds are ignored.


Assuntos
Formamidas/química , Peptídeos/química , Isótopos de Carbono , Ligação de Hidrogênio , Modelos Moleculares , Isótopos de Nitrogênio , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA