Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543348

RESUMO

The effect of particle size and oxidation degree of new carbon microfillers, based on coal pitch (CP) and petroleum pitch (PET) cokes, on the structure as well as thermal, mechanical, and electrical properties of the composites based on ultrahigh molecular weight polyethylene (UHMWPE) was investigated. The composites studied have a segregated structure of filler particle distribution in the UHMWPE matrix. It was found that composite with smaller CP grain fraction has the highest Young's modulus and electrical conductivity compared to the other composites studied, which can be the result of a large contribution of flake-shaped particles. Additionally, conductivity of this composite turned out to be similar to composites with well-known carbon nanofillers, such as graphene, carbon black, and CNTs. Additionally, the relationship between electrical conductivity and Young's modulus values of composites studied was revealed, which indicates that electrical conductivity is very sensitive to the structure of the filler phase in the polymer matrix. In general, it was established that the properties, especially the electrical conductivity, of the composites studied strongly depends on the size, shape, and oxidative treatment of CP and PET filler particles, and that the CP coke of appropriately small particle sizes and flake shape has significant potential as a conductive filler for polymer composites.

2.
Materials (Basel) ; 17(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473459

RESUMO

To create materials that interact effectively with electromagnetic (EM) radiation, new nanosized substituted ferrites (NiZn)1-xMnxFe2O4 (x = 0, 0.5, and 1) anchored on the surface of multi-walled carbon nanotubes (CNTs) have been synthesized. The concentration of CNTs in the (NiZn)1-xMnxFe2O4/CNT system was from 0.05 to 0.07 vol. fractions. The dielectric and magnetic characteristics of both pristine (NiZn)1-xMnxFe2O4 ferrites and (NiZn)1-xMnxFe2O4/CNT composite systems were studied. The introduction of (NiZn)1-xMnxFe2O4/CNT composites into the amorphous epoxy matrix allows to tailor absorbing properties at the high-frequency by effectively shifting the maximum peak values of the absorption and reflection coefficient to a region of lower frequencies (20-30 GHz). The microwave adsorption properties of (NiZn)1-xMnxFe2O4/0.07CNT-ER (x = 0.5) systems showed that the maximum absorption bandwidth with reflection loss below -10 dB is about 11 GHz.

3.
Materials (Basel) ; 16(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895599

RESUMO

This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) as a plasticizing agent on the structure and properties of PHB-based biopolymer materials as well as the process and structure of welded joints formation using ultrasonic welding technique. The weldability of biodegradable layers based on PHB and PHB/DBUA mixture was ultrasonically welded and optimized using a standard Branson press-type installation. The effect of the DBUA plasticizer and welding process on the structure of PHB-based biodegradable material was investigated using scanning electron microscopy, X-ray diffraction, FT-IR spectroscopy, differential scanning calorimetry, and thermomechanical analysis. The results confirmed that the DBUA acted as an effective plasticizer of PHB, contributing to lower crystallinity of the PHB/DBUA mixture (63%) in relation to the crystallinity degree of pure PHB film (69%). Ultrasonic welding resulted in an additional increase (approximately 8.5%) in the degree of crystallinity in the PHB/DBUA in relation to the initial PHB/DBUA mixture. The significant shift toward lower temperatures of the crystallization and melting peaks of PHB modified with DBUA were observed using DSC concerning pure PHB. The melt crystallization process of PHB was affected by welding treatment, and a shift toward higher temperature was observed compared with the unwelded PHB/DBUA sample. The butt-welded joints of biodegradable PHB/DBUA materials made using the ultrasonic method tested for tensile strength have damaged the area immediately outside the joining surface.

4.
Materials (Basel) ; 14(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361472

RESUMO

Extrusion is a popular method for producing homogenous population of unilamellar liposomes. The technique relies on forcing a lipid suspension through cylindrical pores in a polycarbonate membrane. The quantification of the extrusion and/or recalibration processes make possible the acquisition of experimental data, which can be correlated with the mechanical properties of the lipid bilayer. In this work, the force needed for the extrusion process was correlated with the mechanical properties of a lipid bilayer derived from other experiments. Measurements were performed using a home-made dedicated device capable of maintaining a stable volumetric flux of a liposome suspension through well-defined pores and to continuously measure the extrusion force. Based on the obtained results, the correlation between the lipid bilayer bending rigidity and extrusion force was derived. Specifically, it was found that the bending rigidity of liposomes formed from well-defined lipid mixtures agrees with data obtained by others using flicker-noise spectroscopy or micromanipulation. The other issue addressed in the presented studies was the identification of molecular mechanisms leading to the formation of unilamellar vesicles in the extrusion process. Finally, it was demonstrated that during the extrusion, lipids are not exchanged between vesicles, i.e., vesicles can divide but no membrane fusion or lipid exchange between bilayers was detected.

5.
Adv Colloid Interface Sci ; 285: 102285, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33070104

RESUMO

The current status of knowledge regarding magnetic hybrid structures based on graphene or carbon nanotubes with various forms of iron oxides is reviewed. The paper starts with a summary of the preparation and properties of iron oxide nanoparticles, both untreated and coated with silica or polymer layers. In the next section, organic-inorganic hybrid materials obtained as a result of a combination of graphene or carbon nanotubes and iron chemical compounds are characterized and discussed. These hybrids constitute an increasing percentage of all consumable high performance biomedical, electronic, and energy materials due to their valuable properties and low production costs. The potential of their application as components of materials used in corrosion protection, catalysis, spintronics, biomedicine, photoelectrochemical water splitting and groundwater remediation, as well as magnetic nanoparticles in polymer matrices, are also presented. The last part of this review article is focused on reporting the most recent developments in design and the understanding of the properties of polymer composites reinforced with nanometer-sized iron oxide/graphene and iron oxide/carbon nanotubes hybrid fillers. The discussion presents comparative analysis of the magnetic, electromagnetic shielding, electrical, thermal, and mechanical properties of polymer composites with various iron oxide/graphene structures. It is shown that the introduction of hybrid filler nanoparticles into polymer matrices enhances both the macro- and microproperties of final composites as a result of synergistic effects of individual components and the simultaneous formation of an oriented filler network in the polymer. The reinforcing effect is related to the structure and geometry of hybrid nanoparticles applied as a filler, the interactions between the filler particles, their concentration in a composite, and the method of composite processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA