Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Cell ; 35(3): 1013-1037, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36573016

RESUMO

The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface.


Assuntos
Domesticação , Zea mays , Zea mays/genética , Lactonas , Grão Comestível/genética , Fenótipo
2.
Proc Natl Acad Sci U S A ; 120(31): e2305298120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490540

RESUMO

Nearly all eukaryotes carry DNA transposons of the Robertson's Mutator (Mu) superfamily, a widespread source of genome instability and genetic variation. Despite their pervasive impact on host genomes, much remains unknown about the evolution of these transposons. Transposase recognition of terminal inverted repeats (TIRs) is thought to drive and constrain coevolution of MuDR transposase genes and TIRs. To address the extent of this relationship and its impact, we compared separate phylogenies of TIRs and MuDR gene sequences from Mu elements in the maize genome. Five major clades were identified. As expected, most Mu elements were bound by highly similar TIRs from the same clade (homomorphic type). However, a subset of elements contained dissimilar TIRs derived from divergent clades. These "heteromorphs" typically occurred in multiple copies indicating active transposition in the genome. In addition, analysis of internal sequences showed that exchanges between elements having divergent TIRs produced new mudra and mudrb gene combinations. In several instances, TIR homomorphs had been regenerated within a heteromorph clade with retention of distinctive internal MuDR sequence combinations. Results reveal that recombination between divergent clades facilitates independent evolution of transposase (mudra), transposase-binding targets (TIRs), and capacity for insertion (mudrb) of active Mu elements. This mechanism would be enhanced by the preference of Mu insertions for recombination-rich regions near the 5' ends of genes. We suggest that cycles of recombination give rise to alternating homo- and heteromorph forms that enhance the diversity on which selection for Mu fitness can operate.


Assuntos
Transposases , Zea mays , Zea mays/genética , Transposases/genética , Elementos de DNA Transponíveis/genética , Sequências Repetidas Terminais/genética , Recombinação Genética
3.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
4.
Plant Physiol ; 192(2): 1268-1288, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36691698

RESUMO

Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.


Assuntos
Amido , Zea mays , Gravidez , Feminino , Humanos , Zea mays/metabolismo , Amido/metabolismo , Placenta/metabolismo , Endosperma/metabolismo , Oxigênio/metabolismo , Hipóxia/metabolismo
5.
Plant Physiol ; 185(2): 295-317, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721892

RESUMO

Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.


Assuntos
Oxigênio/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Transcriptoma , Zea mays/metabolismo , Anaerobiose , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Piruvato Descarboxilase/genética , Estresse Fisiológico , Zea mays/genética
6.
Plant Physiol ; 184(2): 620-631, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32769162

RESUMO

Sequence-indexed insertional libraries in maize (Zea mays) are fundamental resources for functional genetics studies. Here, we constructed a Mutator (Mu) insertional library in the B73 inbred background designated BonnMu A total of 1,152 Mu-tagged F2-families were sequenced using the Mu-seq approach. We detected 225,936 genomic Mu insertion sites and 41,086 high quality germinal Mu insertions covering 16,392 of the annotated maize genes (37% of the B73v4 genome). On average, each F2-family of the BonnMu libraries captured 37 germinal Mu insertions in genes of the Filtered Gene Set (FGS). All BonnMu insertions and phenotypic seedling photographs of Mu-tagged F2-families can be accessed via MaizeGDB.org Downstream examination of 137,410 somatic and germinal insertion sites revealed that 50% of the tagged genes have a single hotspot, targeted by Mu By comparing our BonnMu (B73) data to the UniformMu (W22) library, we identified conserved insertion hotspots between different genetic backgrounds. Finally, the vast majority of BonnMu and UniformMu transposons was inserted near the transcription start site of genes. Remarkably, 75% of all BonnMu insertions were in closer proximity to the transcription start site (distance: 542 bp) than to the start codon (distance: 704 bp), which corresponds to open chromatin, especially in the 5' region of genes. Our European sequence-indexed library of Mu insertions provides an important resource for functional genetics studies of maize.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Mutagênese Insercional , Mutação , Zea mays/genética , Elementos de DNA Transponíveis , Genômica , Transposases
7.
Plant J ; 99(1): 23-40, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30746832

RESUMO

Cereal yields decrease when grain fill proceeds under conditions of prolonged, moderately elevated temperatures. Endosperm-endogenous processes alter both rate and duration of dry weight gain, but underlying mechanisms remain unclear. Heat effects could be mediated by either abnormal, premature cessation of storage compound deposition or accelerated implementation of normal development. This study used controlled environments to isolate temperature as the sole environmental variable during Zea mays kernel-fill, from 12 days after pollination to maturity. Plants subjected to elevated day, elevated night temperatures (38°C day, 28°C night (38/28°C])) or elevated day, normal night (38/17°C), were compared with those from controls grown under normal day and night conditions (28/17°C). Progression of change over time in endosperm tissue was followed to dissect contributions at multiple levels, including transcriptome, metabolome, enzyme activities, product accumulation, and tissue ultrastructure. Integrated analyses indicated that the normal developmental program of endosperm is fully executed under prolonged high-temperature conditions, but at a faster rate. Accelerated development was observed when both day and night temperatures were elevated, but not when daytime temperature alone was increased. Although transcripts for most components of glycolysis and respiration were either upregulated or minimally affected, elevated temperatures decreased abundance of mRNAs related to biosynthesis of starch and storage proteins. Further analysis of 20 central-metabolic enzymes revealed six activities that were reduced under high-temperature conditions, indicating candidate roles in the observed reduction of grain dry weight. Nonetheless, a striking overall resilience of grain filling in the face of elevated temperatures can be attributed to acceleration of normal endosperm development.


Assuntos
Endosperma/metabolismo , Zea mays/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Endosperma/genética , Endosperma/fisiologia , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Temperatura , Zea mays/genética , Zea mays/fisiologia
8.
Plant J ; 93(5): 799-813, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315977

RESUMO

Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone-9 (PQ-9) biosynthesis in the plastid. The resulting PQ-9 deficiency prohibits photosynthetic electron transfer and eliminates PQ-9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light-grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ-9 for phytoene desaturation, dark-grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ-9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ-9 are not subject to severe photo-oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ-9; and (2) demonstrate that PQ-9 and carotenoids are not required for vitamin E accumulation.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Tocoferóis/metabolismo , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Alquil e Aril Transferases/genética , Carotenoides/genética , Carotenoides/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Fotossíntese , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/genética , Plastídeos/metabolismo , Sementes/genética , Sementes/metabolismo , Vitamina E/genética , Vitamina E/metabolismo , Zea mays/genética
9.
Biochem Biophys Res Commun ; 474(4): 696-701, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27154221

RESUMO

Plant aldo-keto reductases of the AKR4C subfamily play key roles during stress and are attractive targets for developing stress-tolerant crops. However, these AKR4Cs show little to no activity with previously-envisioned sugar substrates. We hypothesized a structural basis for the distinctive cofactor binding and substrate specificity of these plant enzymes. To test this, we solved the crystal structure of a novel AKR4C subfamily member, the AKR4C7 from maize, in the apo form and in complex with NADP(+). The binary complex revealed an intermediate state of cofactor binding that preceded closure of Loop B, and also indicated that conformational changes upon substrate binding are required to induce a catalytically-favorable conformation of the active-site pocket. Comparative structural analyses of homologues (AKR1B1, AKR4C8 and AKR4C9) showed that evolutionary redesign of plant AKR4Cs weakened interactions that stabilize the closed conformation of Loop B. This in turn decreased cofactor affinity and altered configuration of the substrate-binding site. We propose that these structural modifications contribute to impairment of sugar reductase activity in favor of other substrates in the plant AKR4C subgroup, and that catalysis involves a three-step process relevant to other AKRs.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/ultraestrutura , NADP/química , NADP/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/ultraestrutura , Aldo-Ceto Redutases , Sítios de Ligação , Coenzimas/química , Coenzimas/ultraestrutura , Ativação Enzimática , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
10.
Plant Physiol ; 158(2): 708-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22123901

RESUMO

The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.


Assuntos
Divisão Celular , Glucosiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Evolução Biológica , Glucosiltransferases/genética , Mutação , Filogenia , RNA Mensageiro/genética , Zea mays/citologia , Zea mays/enzimologia
11.
Plant Physiol ; 160(3): 1303-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961131

RESUMO

Strigolactones (SLs) control lateral branching in diverse species by regulating transcription factors orthologous to Teosinte branched1 (Tb1). In maize (Zea mays), however, selection for a strong central stalk during domestication is attributed primarily to the Tb1 locus, leaving the architectural roles of SLs unclear. To determine how this signaling network is altered in maize, we first examined effects of a knockout mutation in an essential SL biosynthetic gene that encodes CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8), then tested interactions between SL signaling and Tb1. Comparative genome analysis revealed that maize depends on a single CCD8 gene (ZmCCD8), unlike other panicoid grasses that have multiple CCD8 paralogs. Function of ZmCCD8 was confirmed by transgenic complementation of Arabidopsis (Arabidopsis thaliana) max4 (ccd8) and by phenotypic rescue of the maize mutant (zmccd8::Ds) using a synthetic SL (GR24). Analysis of the zmccd8 mutant revealed a modest increase in branching that contrasted with prominent pleiotropic changes that include (1) marked reduction in stem diameter, (2) reduced elongation of internodes (independent of carbon supply), and (3) a pronounced delay in development of the centrally important, nodal system of adventitious roots. Analysis of the tb1 zmccd8 double mutant revealed that Tb1 functions in an SL-independent subnetwork that is not required for the other diverse roles of SL in development. Our findings indicate that in maize, uncoupling of the Tb1 subnetwork from SL signaling has profoundly altered the balance between conserved roles of SLs in branching and diverse aspects of plant architecture.


Assuntos
Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sesquiterpenos/metabolismo , Transdução de Sinais , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epistasia Genética , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Inflorescência/anatomia & histologia , Modelos Biológicos , Mutagênese Insercional/genética , Mutação/genética , Tamanho do Órgão , Especificidade de Órgãos/genética , Oxigenases/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Reprodução/genética , Transdução de Sinais/genética , Sintenia/genética , Zea mays/genética , Zea mays/metabolismo
12.
Front Plant Sci ; 13: 948656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589098

RESUMO

The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato ('BHN 1022') and beefsteak tomato ('Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either "generative" ('Estamino') or "vegetative" ('DR0141TX') by some commercial suppliers or had not been characterized ['RST-04-106-T' and 'SHIELD RZ F1 (61-802)']. Also, 'Estamino', 'DR0141TX', and 'RST-04-106-T' had been described as more vigorous than 'SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the "vegetative" and "generative" rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the "vegetative" rootstock in fall planting. Positive effects of 'RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. 'SHIELD RZ F1 (61-802)' led to similar yields as the non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the "vegetative" and "generative" rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the "vegetative" and "generative" rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called "vegetative" and "generative" rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.

13.
Front Plant Sci ; 13: 948556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589104

RESUMO

Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato ('BHN 1022') and beefsteak tomato ('Skyway') were grafted onto four rootstocks ['Estamino' (vigorous and "generative"), 'DR0141TX' (vigorous and "vegetative"), 'RST-04-106-T' (uncharacterized), and 'SHIELD RZ F1 (61-802)' (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as "vegetative" ('DR0141TX') or "generative" ('Estamino'), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the 'RST-04-106-T' rootstock, although little to no change was seen with grafting onto 'SHIELD RZ F1 (61-802)'. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and planting season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color (C* and H°), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups.

14.
Front Plant Sci ; 12: 800326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211133

RESUMO

In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 (Sh2) and isoamylase type DBE Sugary1 (Su1). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1, to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2, and su1) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3' RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transporters and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1, and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1, suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1.

15.
Plant Physiol ; 151(4): 1703-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19926802

RESUMO

Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.


Assuntos
Parede Celular/genética , Parede Celular/fisiologia , Zea mays/genética , Arabidopsis/genética , Metabolismo dos Carboidratos/genética , Carboidratos/biossíntese , Elementos de DNA Transponíveis/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional/genética , Mutação/genética , Nucleotídeos/metabolismo , Oryza/genética , Fenótipo , Propanóis/metabolismo , Especificidade por Substrato/genética , Zea mays/citologia
16.
Plant Physiol Biochem ; 47(2): 98-104, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056286

RESUMO

The aldo-keto reductases (AKRs) are classified as oxidoreductases and are found in organisms from prokaryotes to eukaryotes. The AKR superfamily consists of more than 120 proteins that are distributed throughout 14 families. Very few plant AKRs have been characterized and their biological functions remain largely unknown. Previous work suggests that AKRs may participate in stress tolerance by detoxifying reactive aldehyde species. In maize endosperm, the presence of an aldose reductase (AR; EC 1.1.1.21) enzyme has also been hypothesized based on the extensive metabolism of sorbitol. This manuscript identifies and characterizes an AKR from maize (Zea mays L.) with features of an AR. The cDNA clone, classified as AKR4C7, was expressed as a recombinant His-tag fusion protein in Escherichia coli. The product was purified by immobilized metal affinity chromatography followed by anion exchange chromatography. Circular dichroism spectrometry and SAXS analysis indicated that the AKR4C7 protein was stable, remained folded throughout the purification process, and formed monomers of a globular shape, with a molecular envelope similar to human AR. Maize AKR4C7 could utilize dl-glyceraldehyde and some pentoses as substrates. Although the maize AKR4C7 was able to convert sorbitol to glucose, the low affinity for this substrate indicated that AKR4C7 was probably a minimal contributor to sorbitol metabolism in maize seeds. Polyclonal antisera raised against AKR4C7 recognized at least three AR-like polypeptides in maize kernels, consistent with the presence of a small gene family. Diverse functions may have evolved for maize AKRs in association with specific physiological requirements of kernel development.


Assuntos
Zea mays/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Aldeído Redutase , Aldo-Ceto Redutases , Sequência de Aminoácidos , DNA Complementar , Genes de Plantas , Dados de Sequência Molecular , Sorbitol/metabolismo , Zea mays/genética
17.
G3 (Bethesda) ; 8(1): 291-302, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29167273

RESUMO

Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer) mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds), Enhancer/Suppressor-mutator (En/Spm), and Mutator (Mu) transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Mutação , Infertilidade das Plantas/genética , Sementes/genética , Zea mays/genética , Núcleo Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Polinização/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
18.
Nat Genet ; 50(9): 1282-1288, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061736

RESUMO

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


Assuntos
Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Genoma de Planta/genética , Zea mays/genética , Cromatina/genética , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , DNA de Plantas/genética , Genômica/métodos , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos
19.
BMC Genomics ; 8: 116, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17490480

RESUMO

BACKGROUND: Gene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs) map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations. RESULTS: Transposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill. CONCLUSION: We show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.


Assuntos
Bases de Dados Genéticas , Inativação Gênica , Mutagênese Insercional/métodos , Sitios de Sequências Rotuladas , Zea mays/genética , Sequência de Bases , Análise por Conglomerados , Biologia Computacional , Elementos de DNA Transponíveis/genética , Dados de Sequência Molecular , Fosfogluconato Desidrogenase/genética , Sementes/genética , Análise de Sequência de DNA
20.
Genetics ; 206(1): 135-150, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159756

RESUMO

Selection for yellow- and white-grain types has been central to postdomestication improvement of maize. While genetic control of carotenoid biosynthesis in endosperm is attributed primarily to the Yellow1 (Y1) phytoene synthase gene, less is known about the role of the dominant white endosperm factor White Cap (Wc). We show that the Wc locus contains multiple, tandem copies of a Carotenoid cleavage dioxygenase 1 (Ccd1) gene that encodes a carotenoid-degrading enzyme. A survey of 111 maize inbreds and landraces, together with 22 teosinte accessions, reveals that Wc is exclusive to maize, where it is prevalent in white-grain (y1) varieties. Moreover, Ccd1 copy number varies extensively among Wc alleles (from 1 to 23 copies), and confers a proportional range of Ccd1 expression in diverse organs. We propose that this dynamic source of quantitative variation in Ccd1 expression was created in maize shortly after domestication by a two-step, Tam3L transposon-mediated process. First, a chromosome segment containing Ccd1 and several nearby genes duplicated at a position 1.9 Mb proximal to the progenitor Ccd1r locus on chromosome 9. Second, a subsequent interaction of Tam3L transposons at the new locus created a 28-kb tandem duplication, setting up expansion of Ccd1 copy number by unequal crossing over. In this way, transposon-mediated variation in copy number at the Wc locus generated phenotypic variation that provided a foundation for breeding and selection of white-grain color in maize.


Assuntos
Evolução Biológica , Dioxigenases/genética , Grão Comestível/genética , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Cruzamento , Carotenoides/biossíntese , Carotenoides/genética , Mapeamento Cromossômico , Cor , Variações do Número de Cópias de DNA , Dioxigenases/biossíntese , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Filogenia , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Proteínas de Plantas/biossíntese , Seleção Genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA