RESUMO
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
RESUMO
A new group of charge-compensated nido-carboranyl derivatives of sulfur-containing amino acids and biotin has been synthesized in which the boron atom in position 9 or 10 of carborane is attached to a positively charged sulfur atom. The possibilities of obtaining symmetrical B(10)-substituted and asymmetric B(9)-substituted nido-carboranes were studied. Using the example of (S)-methionine and D-biotin derivatives, water-soluble S-substituted charge-compensated nido-carboranes with free functional groups were prepared. The results obtained open up prospects for the development of potential boron delivery agents for BNCT as well as new bioactive compounds containing a negatively charged nido-carboranyl fragment bearing a positive charge on the sulfur atom associated with the boron cluster.
RESUMO
A new route to bicyclic γ-lactams was found, which was proposed as a three-component cyclization of ethyl trifluoropyruvate with methyl ketones and 1,2-, 1,3-amino alcohols. As a result, a series of trifluoromethyl-substituted tetrahydropyrrolo [2,1-b]oxazol-5-ones and tetrahydropyrrolo[2,1-b][1,3]oxazine-6-ones was synthesized, in which the substituent at the nodal carbon atom was varied. The introduction of a twofold excess of ethyl trifluoropyruvate in reactions with amino alcohols and acetone made it possible to obtain the same bicycles, but functionalized with a hydroxyester fragment, which are formed due to four-component interactions of the reagents. Transformations with 2-butanone and aminoethanol lead predominantly to similar bicycles, while an analogous reaction with aminopropanol gives N-hydroxypropyl-2,3-dihydropyrrol-5-one. Almost all bicycles are formed as two diastereomers, the structure of which was determined using 1H, 19F, 13C NMR spectroscopy, including two-dimensional experiments and XRD analysis. A domino mechanism for the formation of tetrahydropyrrolo[2,1-b]oxazacycles was proposed, which was confirmed by their stepwise synthesis through the preliminary preparation of the aldol and bis-aldol from ethyl trifluoropyruvate and methyl ketones.
Assuntos
Acetona , Lactamas , Lactamas/química , Amino Álcoois , Cetonas/química , Estereoisomerismo , Estrutura MolecularRESUMO
Venous thromboembolism is a serious problem because it significantly increases the risk of developing vascular complications in elderly patients with obesity or immobilization, cancer, and many other diseases. Thus, there is a need to study new therapeutic strategies, including new medicinal agents for the efficient and safe correction of thrombus disorders. In this work, we have synthesized a number of new amides and peptides of 4-amino-5-oxoprolines and studied their antiplatelet and antithrombotic activity in experiments in vitro and in vivo. It has been found that the newly obtained compounds slow down the process of thrombus formation in a model of arterial and venous thrombosis, without affecting plasma hemostasis parameters. (2S,4S)-4-Amino-1-(4-fluorophenyl)-5-oxoprolyl-(S)-phenylalanine proved to be the most efficient among the studied derivatives. The results obtained indicate the advisability of further studies on 5-oxoproline derivatives in order to design pharmaceutical agents for the prevention and treatment of the consequences of thrombosis.
Assuntos
Ácido Pirrolidonocarboxílico , Trombose , Humanos , Idoso , Ácido Pirrolidonocarboxílico/química , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Amidas/farmacologia , Trombose/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Inibidores da Agregação Plaquetária/químicaRESUMO
The diastereoselective acylation of a number of racemic methyl-substituted cyclic alkylamines with active esters of 2-phenoxypropanoic acid was studied in detail. The ester of (R)-2-phenoxypropanoic acid and N-hydroxysuccinimide was found to be the most selective agent. The highest stereoselectivity was observed in the kinetic resolution of racemic 2-methylpiperidine in toluene at -40 °C (selectivity factor s = 73) with the predominant formation of (R,R)-amide (93.7% de). To explain the observed stereoselectivity, DFT modelling of the transition states in the reactions of the title acylating agent with 2-methylpiperidine and 2-methylpyrrolidine was performed. The calculated values were in good agreement with experimental data. It has been demonstrated that the acylation proceeds via a concerted mechanism, in which the addition of an amine occurs simultaneously with the elimination of the hydroxysuccinimide fragment. The high stereoselectivity of the (R,R)-amide formation is largely ensured by the lower steric hindrances in the transition states as compared to the formation of (R,S)-amide.
RESUMO
Heteroanalogs of ascidian alkaloids have been synthesized, and for the first time 10 different types of saturated carbo- and heteroannulated pyridones have been obtained. A new method for the formation of decahydro[1,3]oxazolo[2,3-j]quinoline and octahydro-5H-cyclopenta[b][1,3]oxazolo[3,2-a]pyridine was proposed. The synthesis of these heterocycles is based on the three-component cyclization of trifluoroacetoacetic ester and cycloketones with 1,2- and 1,3-dinucleophiles. It was found that reactions with amino alcohols are distinguished by the possibility of isolating carbocyclopyridones of various degrees of saturation. The diastereomeric structure of the synthesized heterocycles has been studied, and the mechanism of their formation has been proposed. Antitumor, anti-influenza and analgesic agents have been found among the synthesized compounds.
Assuntos
Alcaloides/química , Alcaloides/farmacologia , Alcaloides/síntese química , Animais , Ciclização , Estrutura Molecular , UrocordadosRESUMO
A new one-pot reaction between polyfluoroalkylated 3-oxo esters, methyl ketones and primary or secondary alkyl amines is reported as an efficient approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. The scope of three-component cyclization and its plausible mechanism are discussed. The described protocol makes it possible to vary the functional substituents in 2, 3 and 5 positions of carbocycles. Anhydrous conditions are necessary for the productive synthesis of aminocyclohexenones, whereas in the presence of water the competitive formation of alkyl ammonium salts of keto hydroxy carboxylates is observed. Dehydration of the aminocyclohexenones was effectively used for the synthesis of 3-alkylamino-5-trifluoromethylphenols, some of which exhibited moderate antifungal activities against eight pathogenic fungal strains.
RESUMO
The interaction of 2-ethoxymethylidene-3-oxo esters and their analogues with 5-aminotetrazole is an efficient synthetic approach to novel azaheterocycles. 2-Ethoxymethylidene-3-oxo esters bearing alkyl substituents react with 5-aminotetrazole to form ethyl 2-azido-4-alkylpyrimidine-5-carboxylates which are capable of subsequent nucleophilic substitution. The use of diethyl 2-ethoxymethylidenemalonate in this reaction resulted in ethyl 7-hydroxytetrazolo[1,5-a]pyrimidine-6-carboxylate, while ethyl 2-ethoxymethylidenecyanoacetate yielded 5-[2,6-diamino-3,5-bis(ethoxycarbonyl)pyridinium-1-yl]tetrazol-1-ide through an alternative pathway. Ethyl 2-benzoyl-3-ethoxyprop-2-enoate reacted with 5-aminotetrazole by two reaction routes to form ethyl 2-benzoyl-3-(1H-tetrazol-5-ylamino)prop-2-enoate and ethyl 7-(1-ethoxy-1,3-dioxo-3-phenylpropan-2-yl)-5-phenyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate.
RESUMO
A method of synthesis of chitosan imidazolyl derivative - N-(5-methyl-4-imidazolyl)methylchitosan (IM-chitosan) with high degree of substitution (DS) via reaction with 5-methyl-4-imidazolylmethanol has been developed. This method enables one to obtain polymers with the DS up to 1.35 with simultaneous cross-linkage of the matrix. The chemical structure of the obtained IM-chitosan was characterized by FT-IR, (13)C and (15)N NMR spectroscopies. It was shown that cross-linkage of IM-chitosans occurred due to formation of N-glucoside derivatives. Sorption capacities of IM-chitosans toward transition metal ions have an extremal dependence on DS, which is less pronounced for Ag(I) ions in comparison with Cu(II) and Ni(II) ions. The decrease of sorption capacities for derivatives with DS 0.5-1.0 is attributed to steric hindrances for ion-binding due to increased stiffness of the polymer matrix at high DS as a result of cross-linking. Sorption capacities of IM-chitosans toward noble metal ions in 0.1M HCl gradually increase with DS, since higher swelling polymers in acidic media eliminates negative effect of cross-linking on availability of sorption sites.
RESUMO
This study presents a new approach for direct carboxyalkylation of chitosan in the gel state by using aza-Michael addition and substitution reactions. Various reagents were applied including acrylic and crotonic acids, and α-, ß-, γ-, δ-, and É-halocarboxylic acids. The reaction of chitosan with γ- and δ-halocarboxylic acids showed no target product formation either in solution or in the gel state. In the case of acrylic, crotonic, α- and ß-halocarboxylic acids, the reaction performed in the gel state (concentration of chitosan 20-40%) shows higher degree of substitution at lower reaction time and temperature than in diluted solutions (concentration of chitosan 0.5-2%). The results were discussed in terms of kinetics of the target and side reactions. (1)H and (13)C NMR confirmed that in all cases the carboxyalkylation of chitosan proceeds exclusively at the amino groups.
Assuntos
Alquilantes/farmacologia , Quitosana/química , Quitosana/metabolismo , Alquilação , Dióxido de Carbono/metabolismo , Catálise , Géis/química , Géis/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , SoluçõesRESUMO
A convenient way to modify calix[4]arenes based on the direct C-C coupling reaction of their phenol moiety with 1,2,4-triazines has been advanced, and the ability of modified calixarenes to provide transport of La3+ and Ga3+ cations through organic membranes has been examined.
RESUMO
Bis[1,2,3]triazolo[1,5-f:5',1'-b][1,3,6]thiadiazepine and [1,5-g:5',1'-b][1,3,7]thiadiazocine ring systems have been synthesized from 5-halo-1,2,3-thiadiazoles and aliphatic diamines. We have found that the last step of the process is the cyclization of initially formed bis(1,2,3-triazolyl-1,2,3-thiadiazolyl)sulfides. The structures of the intermediates and products were supported by different NMR spectroscopic methods (1H coupled 13C NMR, 2D HETCOR, HMBC and 1D INADEQUATE experiments) and mass spectrometry. Differences in the reaction pathway for aliphatic and less nucleophilic aromatic diamines were determined.