Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Behav Genet ; 53(5-6): 404-415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713023

RESUMO

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples. For the externalizing GWAS, although down-sampling resulted in a loss of genetic signal and fewer genome-wide significant loci; the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses were found robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators who generate and share down-sampled summary statistics report these analyses as accompanying documentation to support other researchers' use of the summary statistics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Genômica/métodos , Herança Multifatorial
2.
Mol Psychiatry ; 26(6): 2056-2069, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393786

RESUMO

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Dieta , Genômica , Humanos , Estilo de Vida
3.
Proc Natl Acad Sci U S A ; 115(22): E4970-E4979, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29686100

RESUMO

Identifying causal effects in nonexperimental data is an enduring challenge. One proposed solution that recently gained popularity is the idea to use genes as instrumental variables [i.e., Mendelian randomization (MR)]. However, this approach is problematic because many variables of interest are genetically correlated, which implies the possibility that many genes could affect both the exposure and the outcome directly or via unobserved confounding factors. Thus, pleiotropic effects of genes are themselves a source of bias in nonexperimental data that would also undermine the ability of MR to correct for endogeneity bias from nongenetic sources. Here, we propose an alternative approach, genetic instrumental variable (GIV) regression, that provides estimates for the effect of an exposure on an outcome in the presence of pleiotropy. As a valuable byproduct, GIV regression also provides accurate estimates of the chip heritability of the outcome variable. GIV regression uses polygenic scores (PGSs) for the outcome of interest which can be constructed from genome-wide association study (GWAS) results. By splitting the GWAS sample for the outcome into nonoverlapping subsamples, we obtain multiple indicators of the outcome PGSs that can be used as instruments for each other and, in combination with other methods such as sibling fixed effects, can address endogeneity bias from both pleiotropy and the environment. In two empirical applications, we demonstrate that our approach produces reasonable estimates of the chip heritability of educational attainment (EA) and show that standard regression and MR provide upwardly biased estimates of the effect of body height on EA.


Assuntos
Pleiotropia Genética , Variação Genética , Estudo de Associação Genômica Ampla , Fatores Socioeconômicos , Estatura/fisiologia , Escolaridade , Estudo de Associação Genômica Ampla/normas , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Avaliação de Resultados em Cuidados de Saúde
4.
PLoS Genet ; 13(1): e1006495, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28095416

RESUMO

Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS summary statistics from multiple studies spanning different regions and/or time periods. This approach averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called 'missing heritability'. Here, we describe the online Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at www.devlaming.eu) which quantifies this attenuation based on a novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We compare the predictions from the MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP heritability and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative loss of 51-62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of 36-38%). Hence, cross-study heterogeneity contributes to the missing heritability.


Assuntos
Confiabilidade dos Dados , Estudo de Associação Genômica Ampla/normas , Software , Estudo de Associação Genômica Ampla/métodos , Humanos , Metanálise como Assunto
5.
Psychol Sci ; 30(1): 43-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499747

RESUMO

A positive relationship between brain volume and intelligence has been suspected since the 19th century, and empirical studies seem to support this hypothesis. However, this claim is controversial because of concerns about publication bias and the lack of systematic control for critical confounding factors (e.g., height, population structure). We conducted a preregistered study of the relationship between brain volume and cognitive performance using a new sample of adults from the United Kingdom that is about 70% larger than the combined samples of all previous investigations on this subject ( N = 13,608). Our analyses systematically controlled for sex, age, height, socioeconomic status, and population structure, and our analyses were free of publication bias. We found a robust association between total brain volume and fluid intelligence ( r = .19), which is consistent with previous findings in the literature after controlling for measurement quality of intelligence in our data. We also found a positive relationship between total brain volume and educational attainment ( r = .12). These relationships were mainly driven by gray matter (rather than white matter or fluid volume), and effect sizes were similar for both sexes and across age groups.


Assuntos
Encéfalo/anatomia & histologia , Escolaridade , Inteligência/fisiologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
6.
Proc Natl Acad Sci U S A ; 110(24): 9692-7, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23708117

RESUMO

Subjective well-being (SWB) is a major topic of research across the social sciences. Twin and family studies have found that genetic factors may account for as much as 30-40% of the variance in SWB. Here, we study genetic contributions to SWB in a pooled sample of ≈ 11,500 unrelated, comprehensively-genotyped Swedish and Dutch individuals. We apply a recently developed method to estimate "common narrow heritability": the fraction of variance in SWB that can be explained by the cumulative additive effects of genetic polymorphisms that are common in the population. Our estimates are 5-10% for single-question survey measures of SWB, and 12-18% after correction for measurement error in the SWB measures. Our results suggest guarded optimism about the prospects of using genetic data in SWB research because, although the common narrow heritability is not large, the polymorphisms that contribute to it could feasibly be discovered with a sufficiently large sample of individuals.


Assuntos
Felicidade , Satisfação Pessoal , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Polimorfismo de Nucleotídeo Único , Sistema de Registros/estatística & dados numéricos , Inquéritos e Questionários , Suécia
7.
Proc Natl Acad Sci U S A ; 109(21): 8026-31, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566634

RESUMO

Preferences are fundamental building blocks in all models of economic and political behavior. We study a new sample of comprehensively genotyped subjects with data on economic and political preferences and educational attainment. We use dense single nucleotide polymorphism (SNP) data to estimate the proportion of variation in these traits explained by common SNPs and to conduct genome-wide association study (GWAS) and prediction analyses. The pattern of results is consistent with findings for other complex traits. First, the estimated fraction of phenotypic variation that could, in principle, be explained by dense SNP arrays is around one-half of the narrow heritability estimated using twin and family samples. The molecular-genetic-based heritability estimates, therefore, partially corroborate evidence of significant heritability from behavior genetic studies. Second, our analyses suggest that these traits have a polygenic architecture, with the heritable variation explained by many genes with small effects. Our results suggest that most published genetic association studies with economic and political traits are dramatically underpowered, which implies a high false discovery rate. These results convey a cautionary message for whether, how, and how soon molecular genetic data can contribute to, and potentially transform, research in social science. We propose some constructive responses to the inferential challenges posed by the small explanatory power of individual SNPs.


Assuntos
Comportamento de Escolha/fisiologia , Economia Comportamental/estatística & dados numéricos , Genética Comportamental/métodos , Estudo de Associação Genômica Ampla , Personalidade/genética , Política , Feminino , Estudos de Associação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Sistema de Registros/estatística & dados numéricos , Suécia/epidemiologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
8.
Psychol Sci ; 25(11): 1975-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25287667

RESUMO

A recent genome-wide-association study of educational attainment identified three single-nucleotide polymorphisms (SNPs) whose associations, despite their small effect sizes (each R (2) ≈ 0.02%), reached genome-wide significance (p < 5 × 10(-8)) in a large discovery sample and were replicated in an independent sample (p < .05). The study also reported associations between educational attainment and indices of SNPs called "polygenic scores." In three studies, we evaluated the robustness of these findings. Study 1 showed that the associations with all three SNPs were replicated in another large (N = 34,428) independent sample. We also found that the scores remained predictive (R (2) ≈ 2%) in regressions with stringent controls for stratification (Study 2) and in new within-family analyses (Study 3). Our results show that large and therefore well-powered genome-wide-association studies can identify replicable genetic associations with behavioral traits. The small effect sizes of individual SNPs are likely to be a major contributing factor explaining the striking contrast between our results and the disappointing replication record of most candidate-gene studies.


Assuntos
Logro , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Escolaridade , Genótipo , Humanos , Massachusetts , Análise de Componente Principal , Queensland , Sistema de Registros , Reprodutibilidade dos Testes
9.
Transl Psychiatry ; 13(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596778

RESUMO

Obesity has a strong genetic component, with up to 20% of variance in body mass index (BMI) being accounted for by common polygenic variation. Most genetic polymorphisms associated with BMI are related to genes expressed in the central nervous system. At the same time, higher BMI is associated with neurocognitive changes. However, the direct link between genetics of obesity and neurobehavioral mechanisms related to weight gain is missing. Here, we use a large sample of participants (n > 4000) from the Adolescent Brain Cognitive Development cohort to investigate how genetic risk for obesity, expressed as polygenic risk score for BMI (BMI-PRS), is related to brain and behavioral measures in adolescents. In a series of analyses, we show that BMI-PRS is related to lower cortical volume and thickness in the frontal and temporal areas, relative to age-expected values. Relatedly, using structural equation modeling, we find that lower overall cortical volume is associated with higher impulsivity, which in turn is related to an increase in BMI 1 year later. In sum, our study shows that obesity might partially stem from genetic risk as expressed in brain changes in the frontal and temporal brain areas, and changes in impulsivity.


Assuntos
Obesidade Infantil , Criança , Adolescente , Humanos , Obesidade Infantil/diagnóstico por imagem , Obesidade Infantil/genética , Fatores de Risco , Índice de Massa Corporal , Aumento de Peso , Encéfalo/diagnóstico por imagem
10.
PLoS One ; 18(11): e0294896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019829

RESUMO

The German Socio-Economic Panel (SOEP) serves a global research community by providing representative annual longitudinal data of respondents living in private households in Germany. The dataset offers a valuable life course panorama, encompassing living conditions, socioeconomic status, familial connections, personality traits, values, preferences, health, and well-being. To amplify research opportunities further, we have extended the SOEP Innovation Sample (SOEP-IS) by collecting genetic data from 2,598 participants, yielding the first genotyped dataset for Germany based on a representative population sample (SOEP-G). The sample includes 107 full-sibling pairs, 501 parent-offspring pairs, and 152 triads, which overlap with the parent-offspring pairs. Leveraging the results from well-powered genome-wide association studies, we created a repository comprising 66 polygenic indices (PGIs) in the SOEP-G sample. We show that the PGIs for height, BMI, and educational attainment capture 22∼24%, 12∼13%, and 9% of the variance in the respective phenotypes. Using the PGIs for height and BMI, we demonstrate that the considerable increase in average height and the decrease in average BMI in more recent birth cohorts cannot be attributed to genetic shifts within the German population or to age effects alone. These findings suggest an important role of improved environmental conditions in driving these changes. Furthermore, we show that higher values in the PGIs for educational attainment and the highest math class are associated with better self-rated health, illustrating complex relationships between genetics, cognition, behavior, socio-economic status, and health. In summary, the SOEP-G data and the PGI repository we created provide a valuable resource for studying individual differences, inequalities, life-course development, health, and interactions between genetic predispositions and the environment.


Assuntos
Sucesso Acadêmico , Estudo de Associação Genômica Ampla , Humanos , Escolaridade , Individualidade , Alemanha/epidemiologia , Fatores Socioeconômicos
11.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993611

RESUMO

Proprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits. Here, we propose a systematic approach to assess the comparability of GWAS summary statistics that include versus exclude restricted data. Illustrating this approach with a multivariate GWAS of an externalizing factor, we assessed the impact of down-sampling on (1) the strength of the genetic signal in univariate GWASs, (2) the factor loadings and model fit in multivariate Genomic SEM, (3) the strength of the genetic signal at the factor level, (4) insights from gene-property analyses, (5) the pattern of genetic correlations with other traits, and (6) polygenic score analyses in independent samples. For the externalizing GWAS, down-sampling resulted in a loss of genetic signal and fewer genome-wide significant loci, while the factor loadings and model fit, gene-property analyses, genetic correlations, and polygenic score analyses are robust. Given the importance of data sharing for the advancement of open science, we recommend that investigators who share down-sampled summary statistics report these analyses as accompanying documentation to support other researchers' use of the summary statistics.

12.
medRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398155

RESUMO

Behaviors and disorders characterized by difficulties with self-regulation, such as problematic substance use, antisocial behavior, and symptoms of attention-deficit/hyperactivity disorder (ADHD), incur high costs for individuals, families, and communities. These externalizing behaviors often appear early in the life course and can have far-reaching consequences. Researchers have long been interested in direct measurements of genetic risk for externalizing behaviors, which can be incorporated alongside other known risk factors to improve efforts at early identification and intervention. In a preregistered analysis drawing on data from the Environmental Risk (E-Risk) Longitudinal Twin Study (N=862 twins) and the Millennium Cohort Study (MCS; N=2,824 parent-child trios), two longitudinal cohorts from the UK, we leveraged molecular genetic data and within-family designs to test for genetic effects on externalizing behavior that are unbiased by the common sources of environmental confounding. Results are consistent with the conclusion that an externalizing polygenic index (PGI) captures causal effects of genetic variants on externalizing problems in children and adolescents, with an effect size that is comparable to those observed for other established risk factors in the research literature on externalizing behavior. Additionally, we find that polygenic associations vary across development (peaking from age 5-10 years), that parental genetics (assortment and parent-specific effects) and family-level covariates affect prediction little, and that sex differences in polygenic prediction are present but only detectable using within-family comparisons. Based on these findings, we believe that the PGI for externalizing behavior is a promising means for studying the development of disruptive behaviors across child development.

13.
J Health Econ ; 81: 102556, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847443

RESUMO

Genetic tests that predict the lifetime risk of common medical conditions are fast becoming more accurate and affordable. The life insurance industry is interested in using predictive genetic tests in the underwriting process, but more research is needed to establish whether this nascent form of genetic testing can refine the process over conventional underwriting factors. Here, we perform Cox regression of survival on a battery of genetic risk scores for common medical conditions and mortality risks in the Health and Retirement Study, without returning results to participants. Adjusted for covariates in a relevant insurance scenario, the scores could improve mortality risk classification by identifying 2.6 years shorter median lifespan in the highest decile of total genetic liability. We conclude that existing genetic risk scores can already improve life insurance underwriting, which stresses the urgency of policymakers to balance competing interests between stakeholders as this technology develops.


Assuntos
Seguro de Vida , Seguro , Testes Genéticos , Humanos , Aposentadoria , Fatores de Risco
14.
Sci Adv ; 8(20): eabm2923, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584223

RESUMO

Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES-gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy.

15.
Nat Commun ; 13(1): 1175, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246521

RESUMO

Heavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds. Consistent with prior literature, we find negative associations between alcohol intake and brain macrostructure and microstructure. Specifically, alcohol intake is negatively associated with global brain volume measures, regional gray matter volumes, and white matter microstructure. Here, we show that the negative associations between alcohol intake and brain macrostructure and microstructure are already apparent in individuals consuming an average of only one to two daily alcohol units, and become stronger as alcohol intake increases.


Assuntos
Substância Branca , Idoso , Consumo de Bebidas Alcoólicas , Bancos de Espécimes Biológicos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Reino Unido , Substância Branca/diagnóstico por imagem
16.
Cereb Cortex Commun ; 3(2): tgac020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702547

RESUMO

Socioeconomic status (SES) anchors individuals in their social network layers. Our embedding in the societal fabric resonates with habitus, world view, opportunity, and health disparity. It remains obscure how distinct facets of SES are reflected in the architecture of the central nervous system. Here, we capitalized on multivariate multi-output learning algorithms to explore possible imprints of SES in gray and white matter structure in the wider population (n ≈ 10,000 UK Biobank participants). Individuals with higher SES, compared with those with lower SES, showed a pattern of increased region volumes in the left brain and decreased region volumes in the right brain. The analogous lateralization pattern emerged for the fiber structure of anatomical white matter tracts. Our multimodal findings suggest hemispheric asymmetry as an SES-related brain signature, which was consistent across six different indicators of SES: degree, education, income, job, neighborhood and vehicle count. Hence, hemispheric specialization may have evolved in human primates in a way that reveals crucial links to SES.

17.
Cell Genom ; 2(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35812988

RESUMO

Understanding which biological pathways are specific versus general across diagnostic categories and levels of symptom severity is critical to improving nosology and treatment of psychopathology. Here, we combine transdiagnostic and dimensional approaches to genetic discovery for the first time, conducting a novel multivariate genome-wide association study of eight psychiatric symptoms and disorders broadly related to mood disturbance and psychosis. We identify two transdiagnostic genetic liabilities that distinguish between common forms of psychopathology versus rarer forms of serious mental illness. Biological annotation revealed divergent genetic architectures that differentially implicated prenatal neurodevelopment and neuronal function and regulation. These findings inform psychiatric nosology and biological models of psychopathology, as they suggest that the severity of mood and psychotic symptoms present in serious mental illness may reflect a difference in kind rather than merely in degree.

18.
Nat Genet ; 54(4): 437-449, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361970

RESUMO

We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Commun Biol ; 4(1): 1180, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642422

RESUMO

Human variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce a computationally efficient approach for multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the genetic correlation between a large number of phenotypes simultaneously. Using individual-level data (N = 20,190) from the UK Biobank, we provide estimates of the heritability of gray-matter volume in 74 regions of interest (ROIs) in the brain and we map genetic correlations between these ROIs and health-relevant behavioral outcomes, including intelligence. We find four genetically distinct clusters in the brain that are aligned with standard anatomical subdivision in neuroscience. Behavioral traits have distinct genetic correlations with brain morphology which suggests trait-specific relevance of ROIs. These empirical results illustrate how MGREML can be used to estimate internally consistent and high-dimensional genetic correlation matrices in large datasets.


Assuntos
Comportamento , Encéfalo/anatomia & histologia , Córtex Cerebral , Feminino , Genoma Humano , Humanos , Masculino , Modelos Genéticos , Análise Multivariada
20.
Nat Hum Behav ; 5(6): 787-794, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33510390

RESUMO

Previous research points to the heritability of risk-taking behaviour. However, evidence on how genetic dispositions are translated into risky behaviour is scarce. Here, we report a genetically informed neuroimaging study of real-world risky behaviour across the domains of drinking, smoking, driving and sexual behaviour in a European sample from the UK Biobank (N = 12,675). We find negative associations between risky behaviour and grey-matter volume in distinct brain regions, including amygdala, ventral striatum, hypothalamus and dorsolateral prefrontal cortex (dlPFC). These effects are replicated in an independent sample recruited from the same population (N = 13,004). Polygenic risk scores for risky behaviour, derived from a genome-wide association study in an independent sample (N = 297,025), are inversely associated with grey-matter volume in dlPFC, putamen and hypothalamus. This relation mediates roughly 2.2% of the association between genes and behaviour. Our results highlight distinct heritable neuroanatomical features as manifestations of the genetic propensity for risk taking.


Assuntos
Consumo de Bebidas Alcoólicas , Condução de Veículo , Substância Cinzenta/diagnóstico por imagem , Tamanho do Órgão/genética , Assunção de Riscos , Comportamento Sexual , Fumar , Adulto , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Feminino , Estudo de Associação Genômica Ampla , Substância Cinzenta/patologia , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Putamen/diagnóstico por imagem , Putamen/patologia , Reino Unido , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA