Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Immunol ; 19(6): 526-537, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777212

RESUMO

After activation, cells of the myeloid lineage undergo robust metabolic transitions, as well as discrete epigenetic changes, that can dictate both ongoing and future inflammatory responses. In atherosclerosis, in which macrophages play central roles in the initiation, growth, and ultimately rupture of arterial plaques, altered metabolism is a key feature that dictates macrophage function and subsequent disease progression. This Review explores how factors central to the plaque microenvironment (for example, altered cholesterol metabolism, oxidative stress, hypoxia, apoptotic and necrotic cells, and hyperglycemia) shape the metabolic rewiring of macrophages in atherosclerosis as well as how these metabolic shifts in turn alter macrophage immune-effector and tissue-reparative functions. Finally, this overview offers insight into the challenges and opportunities of harnessing metabolism to modulate aberrant macrophage responses in disease.


Assuntos
Aterosclerose/imunologia , Aterosclerose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Humanos
2.
Eur Respir J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39326914

RESUMO

To elucidate the important cellular and molecular drivers of pulmonary long COVID, we generated a single-cell transcriptomic map of the airway mucosa using bronchial brushings from patients with long COVID who reported persistent pulmonary symptoms.Adults with and without long COVID were recruited from the general community in Greater Vancouver, Canada. The cohort was divided into those with pulmonary long COVID (PLC), which was defined as persons with new or worsening respiratory symptoms following at least one year from their initial acute SARS-CoV-2 infection (N=9); and control subjects defined as SARS-CoV-2 infected persons whose acute respiratory symptoms had fully resolved or individuals who had no history of acute COVID-19 (N=9). These participants underwent bronchoscopy from which a single cell suspension was created from bronchial brush samples and then sequenced.A total of 56 906 cells were recovered for the downstream analysis, with 34 840 cells belonging to the PLC group, which strikingly showed a unique cluster of neutrophils in the PLC group (p<0.05). Ingenuity Pathway Analysis revealed that the neutrophil degranulation pathway was enriched across epithelial cell clusters. Differential gene expression analysis between the PLC and control groups demonstrated upregulation of inflammatory chemokines and epithelial barrier dysfunction across epithelial cell clusters, as well as over-expression of mucin genes across secretory cell clusters.In conclusion, a single-cell transcriptomic landscape of the small airways suggest that neutrophils may play a significant role in mediating the chronic small airway inflammation driving pulmonary symptoms of long COVID.

5.
J Mol Cell Cardiol ; 163: 1-8, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582824

RESUMO

The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.


Assuntos
Doenças Cardiovasculares , Neoplasias , Doenças Cardiovasculares/complicações , Humanos , Oncologia , Neoplasias/complicações
6.
Trends Immunol ; 40(3): 179-181, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30745266

RESUMO

Macrophages in the heart have dual roles in injury and repair after myocardial infarction, and understanding the two sides of this coin using traditional 'bulk cell' technologies has been challenging. By combining genetic fate-mapping and single-cell transcriptomics, a new study (Nat. Immunol. 2019;20:29-39) reveals how distinct macrophage populations expand and diverge across the healthy heart and after infarction.


Assuntos
Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Animais , Técnicas de Reprogramação Celular , Humanos , Camundongos , Análise de Célula Única , Transcriptoma , Cicatrização
7.
Circ Res ; 127(3): 335-353, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32336197

RESUMO

RATIONALE: Regression of atherosclerosis is an important clinical goal; however, the pathways that mediate the resolution of atherosclerotic inflammation and reversal of plaques are poorly understood. Regulatory T cells (Tregs) have been shown to be atheroprotective, yet the numbers of these immunosuppressive cells decrease with disease progression, and whether they contribute to atherosclerosis regression is not known. OBJECTIVE: We investigated the roles of Tregs in the resolution of atherosclerotic inflammation, tissue remodeling, and plaque contraction during atherosclerosis regression. METHODS AND RESULTS: Using multiple independent mouse models of atherosclerosis regression, we demonstrate that an increase in plaque Tregs is a common signature of regressing plaques. Single-cell RNA-sequencing of plaque immune cells revealed that unlike Tregs from progressing plaques that expressed markers of natural Tregs derived from the thymus, Tregs in regressing plaques lacked Nrp1 expression, suggesting that they are induced in the periphery during lipid-lowering therapy. To test whether Tregs are required for resolution of atherosclerotic inflammation and plaque regression, Tregs were depleted using CD25 monoclonal antibody in atherosclerotic mice during apolipoprotein B antisense oligonucleotide-mediated lipid lowering. Morphometric analyses revealed that Treg depletion blocked plaque remodeling and contraction, and impaired hallmarks of inflammation resolution, including dampening of the T helper 1 response, alternative activation of macrophages, efferocytosis, and upregulation of specialized proresolving lipid mediators. CONCLUSIONS: Our data establish essential roles for Tregs in resolving atherosclerotic cardiovascular disease and provide mechanistic insight into the pathways governing plaque remodeling and regression of disease.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Placa Aterosclerótica , Linfócitos T Reguladores/metabolismo , Animais , Anticorpos/farmacologia , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/patologia , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Knockout para ApoE , Neuropilina-1/genética , Neuropilina-1/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
8.
Arterioscler Thromb Vasc Biol ; 36(5): 942-951, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26941018

RESUMO

OBJECTIVE: Cholesterol homeostasis is fundamental to human health and is, thus, tightly regulated. MicroRNAs exert potent effects on biological pathways, including cholesterol metabolism, by repressing genes with related functions. We reasoned that this mode of pathway regulation could be exploited to identify novel genes involved in cholesterol homeostasis. APPROACH AND RESULTS: Here, we identify oxysterol-binding protein-like 6 (OSBPL6) as a novel target of 2 miRNA hubs regulating cholesterol homeostasis: miR-33 and miR-27b. Characterization of OSBPL6 revealed that it is transcriptionally regulated in macrophages and hepatocytes by liver X receptor and in response to cholesterol loading and in mice and nonhuman primates by Western diet feeding. OSBPL6 encodes the OSBPL-related protein 6 (ORP6), which contains dual membrane- and endoplasmic reticulum-targeting motifs. Subcellular localization studies showed that ORP6 is associated with the endolysosomal network and endoplasmic reticulum, suggesting a role for ORP6 in cholesterol trafficking between these compartments. Accordingly, knockdown of OSBPL6 results in aberrant clustering of endosomes and promotes the accumulation of free cholesterol in these structures, resulting in reduced cholesterol esterification at the endoplasmic reticulum. Conversely, ORP6 overexpression enhances cholesterol trafficking and efflux in macrophages and hepatocytes. Moreover, we show that hepatic expression of OSBPL6 is positively correlated with plasma levels of high-density lipoprotein cholesterol in a cohort of 200 healthy individuals, whereas its expression is reduced in human atherosclerotic plaques. CONCLUSIONS: These studies identify ORP6 as a novel regulator of cholesterol trafficking that is part of the miR-33 and miR-27b target gene networks that contribute to the maintenance of cholesterol homeostasis.


Assuntos
Aterosclerose/metabolismo , MicroRNAs/metabolismo , Receptores de Esteroides/metabolismo , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Sítios de Ligação , Transporte Biológico , Chlorocebus aethiops , Colesterol/metabolismo , HDL-Colesterol/sangue , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Placa Aterosclerótica , Ligação Proteica , Interferência de RNA , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de Esteroides/genética , Transcrição Gênica , Transfecção
9.
Oncologist ; 21(2): 141-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764251

RESUMO

BACKGROUND: Anthracycline-containing chemotherapy (Anth-C) is associated with long-term cardiovascular mortality. Although cardiovascular risk assessment has traditionally focused on the heart, evidence has demonstrated that vascular dysfunction also occurs during and up to 1 year following Anth-C. Whether vascular dysfunction persists long-term or negatively influences cardiac function remains unknown. Hence, the present study evaluated ventricular-arterial coupling, in concert with measures of vascular structure and function, in the years following Anth-C. METHODS: Arterial elastance (Ea), end-systolic elastance (Ees), and ventricular-arterial coupling (Ea/Ees) were measured during rest and exercise using echocardiography. Resting vascular function (flow-mediated dilation) and structure (carotid intima-media thickness, arterial stiffness) were also measured. RESULTS: Thirty breast cancer survivors (6.5 ± 3.6 years after Anth-C) with normal left ventricular ejection fraction (LVEF) (60% ± 6%) and 30 matched controls were studied. At rest, no differences were found in Ea, Ees, Ea/Ees, or LVEF between groups. The normal exercise-induced increase in Ees was attenuated in survivors at 50% and 75% of maximal workload (p < .01). Ea/Ees was also higher at all workloads in the survivors compared with the controls (p < .01). No differences in vascular structure and function were observed between the two groups (p > .05). CONCLUSION: In the years after Anth-C, ventricular-arterial coupling was significantly attenuated during exercise, primarily owing to decreased LV contractility (indicated by a reduced Ees). This subclinical dysfunction appears to be isolated to the heart, as no differences in Ea were observed. The previously reported adverse effects of Anth-C on the vasculature appear to not persist in the years after treatment, as vascular structure and function were comparable to controls. IMPLICATIONS FOR PRACTICE: Anthracycline-induced cardiotoxicity results in significantly impaired ventricular-arterial coupling in the years following chemotherapy, owing specifically to decreased left ventricular contractility. This subclinical dysfunction was identified only under exercise stress. A comprehensive evaluation of vascular structure and function yielded no differences between those treated with anthracyclines and controls. Combined with a stress stimulus, ventricular-arterial coupling might hold significant value beyond characterization of integrative cardiovascular function, in particular as a part of a risk-stratification strategy after anthracycline-containing chemotherapy. Although vascular function and structure were not different in this cohort, this does not undermine the importance of identifying vascular (dys)function in this population, because increases in net arterial load during exercise might amplify the effect of reductions in contractility on cardiovascular function after anthracycline-containing chemotherapy.


Assuntos
Antraciclinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/terapia , Exercício Físico , Idoso , Antraciclinas/efeitos adversos , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Cardiotoxicidade/patologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/patologia , Espessura Intima-Media Carotídea/mortalidade , Quimioterapia Adjuvante/efeitos adversos , Ecocardiografia , Feminino , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Função Ventricular Esquerda/efeitos dos fármacos
11.
Oncology (Williston Park) ; 29(12): 908-20, 922, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26676894

RESUMO

Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer.


Assuntos
Transformação Celular Neoplásica/imunologia , Exercício Físico/fisiologia , Inflamação/imunologia , Neoplasias/imunologia , Animais , Progressão da Doença , Humanos
12.
Breast Cancer Res Treat ; 143(3): 531-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390149

RESUMO

Conventional resting left ventricular ejection fraction (LVEF) assessments have limitations for detecting doxorubicin (DOX)-related cardiac dysfunction. Novel resting echocardiographic parameters, including 3-dimensional echocardiography (3DE) and global longitudinal strain (GLS), have potential for early identification of chemotherapy-related myocardial injury. Exercise "stress" is an established method to uncover impairments in cardiac function but has received limited attention in the adult oncology setting. We evaluated the utility of an integrated approach using 3DE, GLS, and exercise stress echocardiography for detecting subclinical cardiac dysfunction in early breast cancer patients treated with DOX-containing chemotherapy. Fifty-seven asymptomatic women with early breast cancer (mean 26 ± 22 months post-chemotherapy) and 20 sex-matched controls were studied. Resting left ventricular (LV) function was assessed by LVEF using 2-dimensional echocardiography (2DE) and 3DE and by GLS using 2-dimensional speckle-tracking echocardiography (2D-STE). After resting assessments, subjects completed cardiopulmonary exercise testing with stress 2DE. Resting LVEF was lower in patients than controls by 3DE (55 ± 4 vs. 59 ± 5 %; p = 0.005) but not 2DE (56 ± 4 vs. 58 ± 3 %; p = 0.169). 10 of 51 (20 %) patients had GLS greater than or equal to -17 %, which was below the calculated lower limit of normal (control mean 2SD); this patient subgroup had a mean 20 % impairment in GLS (-16.1 ± 0.9 vs. -20.1 ± 1.5 %; p < 0.001), despite similar LVEF by 2DE and 3DE compared to controls (p > 0.05). Cardiopulmonary function (VO2peak) was 20 % lower in patients than controls (p < 0.001). Exercise stress 2DE assessments of stroke volume (61 ± 11 vs. 69 ± 15 ml; p = 0.018) and cardiac index (2.3 ± 0.9 vs. 3.1 ± 0.8 l min(-1) m(-2) mean increase; p = 0.003) were lower in patients than controls. Post-exercise increase in cardiac index predicted VO2peak (r = 0.429, p = 0.001). Resting 3DE, GLS, and exercise stress 2DE detect subclinical cardiac dysfunction not apparent with resting 2DE in post-DOX breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/efeitos adversos , Cardiopatias/fisiopatologia , Adulto , Neoplasias da Mama/fisiopatologia , Doxorrubicina/administração & dosagem , Ecocardiografia sob Estresse/métodos , Teste de Esforço/métodos , Feminino , Cardiopatias/induzido quimicamente , Humanos , Pessoa de Meia-Idade
13.
Respirology ; 19(1): 105-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23890224

RESUMO

BACKGROUND AND OBJECTIVE: In this era of increasing options for treatment of 'surgical' lung cancer patients, preoperative physiologic assessment of accurate patient selection is becoming more important. The variability in an objective measure of cardiorespiratory fitness (peak oxygen consumption (VO2peak )) across performance in operable non-small-cell lung cancer (NSCLC) patients enrolled in the Cancer and Leukemia Group B trial was compared. METHODS: Using a cross-sectional design, 392 NSCLC patients underwent an incremental cardiopulmonary cycling exercise test to symptom limitation with expired gas analysis to determine VO2peak . Performance status (PS) was assessed using the Eastern Cooperative Oncology Group (ECOG) tool. RESULTS: There was a significant decrease in VO2peak across increasing ECOG categories (P < 0.0001). However, there was a large range in VO2peak for any given ECOG category with overlap between categories (ECOG 0: 5.0-31.5 mL/kg/min; ECOG 1: 4.3-24.8 mL/kg/min; ECOG 2: 8.9-21.9 mL/kg/min; ECOG 3; 3.3-11.7 mL/kg/min). CONCLUSIONS: PS scoring systems do not provide a sensitive measure of functional status. Objective measures such as VO2peak may be a useful in the clinical management of oncology patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Consumo de Oxigênio/fisiologia , Oxigênio/sangue , Seleção de Pacientes , Pneumonectomia , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Estudos Transversais , Teste de Esforço , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Prognóstico
14.
iScience ; 27(10): 110934, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39391738

RESUMO

We hypothesized that increased cardiorespiratory fitness (CRF) slows down a person's aging, particularly in individuals with chronic airflow limitation (CAL). Participants aged ≥40 years (n = 78) had baseline blood DNA methylation profiled and underwent cardiopulmonary cycle exercise testing at baseline and at three years. Epigenetic clocks were calculated and tested for their association with CRF using linear regression. Differentially methylated genes associated with CRF were identified using a robust linear model. Higher CRF at baseline was associated with lower age acceleration in the epigenetic clocks DNAmAgeSkinBlood (p = 0.016), DNAmGrimAge (p = 0.012), and DNAmGrimAge2 (p = 0.011). These effects were consistent in individuals with CAL (DNAmGrimAge p = 0.009 and DNAmGrimAge2 p = 0.007). CRF at three years was associated with baseline DNAmGrimAge (p = 0.015) and DNAmGrimAge2 (p = 0.011). Differentially methylated genes associated with CRF enriched multiple aging-related pathways, including cellular senescence. Enhancing CRF may be one intervention that can slow biological aging and improve health outcomes in chronic respiratory diseases.

15.
Breast Cancer Res Treat ; 138(3): 909-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23504137

RESUMO

We examined cardiorespiratory fitness (CRF) levels in early stage breast cancer patients and determined whether CRF differs as a function of adjuvant therapy regimen. A total of 180 early breast cancer patients representing three treatment groups (surgery only, single-, and multi-modality adjuvant therapy) in the Cooper Center Longitudinal Study (CCLS) were studied. A non-cancer control group (n = 180) matched by sex, age, and date of the CCLS visit was included. All subjects underwent an incremental exercise tolerance test to symptom limitation to assess CRF (i.e., peak metabolic equivalents [METs] and time to exhaustion). The mean time from breast cancer diagnosis to exercise tolerance testing was 7.4 ± 6.2 years. In adjusted analyses, time to exhaustion and peak METs were incrementally impaired with the addition of surgery, single-, and multi-modality adjuvant therapy compared to those of matched controls (p = 0.006 and 0.028, respectively). CRF was lowest in the multi-modality group compared to all other groups (all p's < 0.05). Despite being 7 years post-diagnosis, asymptomatic early breast cancer survivors have marked reductions in CRF. Patients treated with multi-modal adjuvant therapy have the greatest impairment in CRF.


Assuntos
Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/terapia , Fenômenos Fisiológicos Cardiovasculares , Terapia Combinada/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Fenômenos Fisiológicos Cardiovasculares/efeitos da radiação , Estudos de Casos e Controles , Teste de Esforço , Tolerância ao Exercício , Fadiga , Feminino , Humanos , Estudos Longitudinais , Mastectomia , Pessoa de Meia-Idade , Aptidão Física , Estudos Prospectivos , Sobreviventes
16.
Cells ; 12(24)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132091

RESUMO

BACKGROUND: Macrophages and monocytes orchestrate inflammatory processes in the lungs. However, their role in the pathogenesis of chronic obstructive pulmonary disease (COPD), an inflammatory condition, is not well known. Here, we determined the characteristics of these cells in lungs of COPD patients and identified novel therapeutic targets. METHODS: We analyzed the RNA sequencing (scRNA-seq) data of explanted human lung tissue from COPD (n = 18) and control (n = 28) lungs and found 16 transcriptionally distinct groups of macrophages and monocytes. We performed pathway and gene enrichment analyses to determine the characteristics of macrophages and monocytes from COPD (versus control) lungs and to identify the therapeutic targets, which were then validated using data from a randomized controlled trial of COPD patients (DISARM). RESULTS: In the alveolar macrophages, 176 genes were differentially expressed (83 up- and 93 downregulated; Padj < 0.05, |log2FC| > 0.5) and were enriched in downstream biological processes predicted to cause poor lipid uptake and impaired cell activation, movement, and angiogenesis in COPD versus control lungs. Classical monocytes from COPD lungs harbored a differential gene set predicted to cause the activation, mobilization, and recruitment of cells and a hyperinflammatory response to influenza. In silico, the corticosteroid fluticasone propionate was one of the top compounds predicted to modulate the abnormal transcriptional profiles of these cells. In vivo, a fluticasone-salmeterol combination significantly modulated the gene expression profiles of bronchoalveolar lavage cells of COPD patients (p < 0.05). CONCLUSIONS: COPD lungs harbor transcriptionally distinct lung macrophages and monocytes, reflective of a dysfunctional and hyperinflammatory state. Inhaled corticosteroids and other compounds can modulate the transcriptomic profile of these cells in patients with COPD.


Assuntos
Macrófagos Alveolares , Monócitos , Doença Pulmonar Obstrutiva Crônica , Humanos , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Pulmão/metabolismo , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Ensaios Clínicos Controlados não Aleatórios como Assunto , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
17.
Cardiovasc Res ; 119(1): 236-251, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35134856

RESUMO

AIMS: Acute myocardial infarction rapidly increases blood neutrophils (<2 h). Release from bone marrow, in response to chemokine elevation, has been considered their source, but chemokine levels peak up to 24 h after injury, and after neutrophil elevation. This suggests that additional non-chemokine-dependent processes may be involved. Endothelial cell (EC) activation promotes the rapid (<30 min) release of extracellular vesicles (EVs), which have emerged as an important means of cell-cell signalling and are thus a potential mechanism for communicating with remote tissues. METHODS AND RESULTS: Here, we show that injury to the myocardium rapidly mobilizes neutrophils from the spleen to peripheral blood and induces their transcriptional activation prior to arrival at the injured tissue. Time course analysis of plasma-EV composition revealed a rapid and selective increase in EVs bearing VCAM-1. These EVs, which were also enriched for miRNA-126, accumulated preferentially in the spleen where they induced local inflammatory gene and chemokine protein expression, and mobilized splenic-neutrophils to peripheral blood. Using CRISPR/Cas9 genome editing, we generated VCAM-1-deficient EC-EVs and showed that its deletion removed the ability of EC-EVs to provoke the mobilization of neutrophils. Furthermore, inhibition of miRNA-126 in vivo reduced myocardial infarction size in a mouse model. CONCLUSIONS: Our findings show a novel EV-dependent mechanism for the rapid mobilization of neutrophils to peripheral blood from a splenic reserve and establish a proof of concept for functional manipulation of EV-communications through genetic alteration of parent cells.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Neutrófilos/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Biomedicines ; 10(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35625847

RESUMO

BACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) are commonly treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous studies have investigated the host-microbiome interactions in COPD, the effects of specific steroid formulations on this complex cross-talk remain obscure. METHODS: We collected and evaluated data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only. Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were correlated with changes in host gene expression using a Spearman's rank correlation test. FINDINGS: In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the expression levels of 122 host genes were significantly related to changes in the relative abundance of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological processes related to innate and adaptive immunity and inflammation. None of these changes were evident in patients treated with formoterol/budesonide or formoterol alone. INTERPRETATION: Changes in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host transcriptome in the small airways of patients with COPD. These data may provide insights into why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway infection, including pneumonia. FUNDING: The Canadian Institute of Health Research, the British Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.

19.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569056

RESUMO

Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).


Assuntos
Receptores X do Fígado , Neoplasias Mamárias Experimentais , Células Mieloides , Receptores de Esteroides , Animais , Colesterol/metabolismo , Feminino , Ligantes , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA/genética , RNA/metabolismo , Receptores de Esteroides/metabolismo
20.
Cell Rep ; 36(10): 109595, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496250

RESUMO

Psychological stress (PS) is associated with systemic inflammation and accelerates inflammatory disease progression (e.g., atherosclerosis). The mechanisms underlying stress-mediated inflammation and future health risk are poorly understood. Monocytes are key in sustaining systemic inflammation, and recent studies demonstrate that they maintain the memory of inflammatory insults, leading to a heightened inflammatory response upon rechallenge. We show that PS induces remodeling of the chromatin landscape and transcriptomic reprogramming of monocytes, skewing them to a primed hyperinflammatory phenotype. Monocytes from stressed mice and humans exhibit a characteristic inflammatory transcriptomic signature and are hyperresponsive upon stimulation with Toll-like receptor ligands. RNA and ATAC sequencing reveal that monocytes from stressed mice and humans exhibit activation of metabolic pathways (mTOR and PI3K) and reduced chromatin accessibility at mitochondrial respiration-associated loci. Collectively, our findings suggest that PS primes the reprogramming of myeloid cells to a hyperresponsive inflammatory state, which may explain how PS confers inflammatory disease risk.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Estresse Fisiológico/imunologia , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA