Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(21): 4090-4102, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312887

RESUMO

Neurons can respond to decreased network activity with a homeostatic increase in the amplitudes of miniature EPSCs (mEPSCs). The prevailing view is that mEPSC amplitudes are uniformly multiplied by a single factor, termed "synaptic scaling." Deviations from purely multiplicative scaling have been attributed to biological differences, or to a distortion imposed by a detection threshold limit. Here, we demonstrate in neurons dissociated from cortices of male and female mice that the shift in mEPSC amplitudes observed in the experimental data cannot be reproduced by simulation of uniform multiplicative scaling, with or without the distortion caused by applying a detection threshold. Furthermore, we demonstrate explicitly that the scaling factor is not uniform but is close to 1 for small mEPSCs, and increases with increasing mEPSC amplitude across a substantial portion of the data. This pattern was also observed for previously published data from dissociated mouse hippocampal neurons and dissociated rat cortical neurons. The finding of "divergent scaling" shifts the current view of homeostatic plasticity as a process that alters all synapses on a neuron equally to one that must accommodate the differential effect observed for small versus large mEPSCs. Divergent scaling still accomplishes the essential homeostatic task of modifying synaptic strengths in the opposite direction of the activity change, but the consequences are greatest for those synapses which individually are more likely to bring a neuron to threshold.SIGNIFICANCE STATEMENT In homeostatic plasticity, the responses to chronic increases or decreases in network activity act in the opposite direction to restore normal activity levels. Homeostatic plasticity is likely to play a role in diseases associated with long-term changes in brain function, such as epilepsy and neuropsychiatric illnesses. One homeostatic response is the increase in synaptic strength following a chronic block of activity. Research is focused on finding a globally expressed signaling pathway, because it has been proposed that the plasticity is uniformly expressed across all synapses. Here, we show that the plasticity is not uniform. Our work suggests that homeostatic signaling molecules are likely to be differentially expressed across synapses.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Camundongos , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
2.
Crit Care ; 18(2): R54, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24669759

RESUMO

INTRODUCTION: Multisystem organ failure remains a poorly understood complication of sepsis. During sepsis, reduced excitability contributes to organ failure of skeletal muscle, nerves and the spinal cord. The goal of this study was to determine whether reduced excitability might also contribute to cardiac failure during sepsis. METHODS: Wistar rats were made septic by cecal ligation and puncture. One day later, action potentials were recorded from beating left ventricular papillary muscle ex vivo by impaling myocytes with sharp microelectrodes. RESULTS: In cardiac papillary muscle from septic rats, action potential amplitude and rate of rise were reduced, while threshold was elevated. These changes in action potential properties suggest sepsis selectively reduces sodium current. To determine the effects of selective reduction in sodium current, we applied tetrodotoxin to papillary muscle from healthy rats and found reduction in action potential amplitude and rate of rise, as well as elevation of threshold. The changes were similar to those triggered by sepsis. Blocking calcium current using nifedipine did not mimic action potential changes induced by sepsis. Contractility of healthy papillary muscle was reduced to 40% of normal following partial block of sodium current by tetrodotoxin, close to the low contractility of septic papillary muscle, which was 30% of normal. CONCLUSIONS: Our data suggest cardiac excitability is reduced during sepsis in rats. The reduction in excitability appears to be primarily due to reduction of sodium current. The reduction in sodium current may be sufficient to explain most of the reduction in cardiac contractility during sepsis.


Assuntos
Potenciais de Ação/fisiologia , Modelos Animais de Doenças , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Sepse/fisiopatologia , Canais de Sódio/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia
3.
Neuroscientist ; : 10738584221112336, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904350

RESUMO

The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.

4.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904400

RESUMO

In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na+ and Ca2+ currents contribute to plateau potentials. Na+ persistent inward current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current through CaV1.1 Ca2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita.


Myotonia is a neuromuscular condition that causes problems with the relaxation of muscles following voluntary movements. One type of myotonia is Becker disease, also called recessive myotonia congenita. This is a genetic condition that causes muscle stiffness as a result of involuntary muscle activity. Patients may also suffer transient weakness for a few seconds or as long as several minutes after initiating a movement. The cause of these bouts of temporary weakness is still unclear, but there are hints that it could be linked to the muscle losing its excitability, the ability to respond to the stimuli that make it contract. However, this is at odds with findings that show that muscles in Becker disease are hyperexcitable. Muscle excitability depends on the presence of different concentrations of charged ions (positively charged sodium, calcium and potassium ions and negatively charged chloride ions) inside and outside of each muscle cells. These different concentrations of ions create an electric potential across the cell membrane, also called the 'membrane potential'. When a muscle cell gets stimulated, proteins on the cell membrane known as ion channels open. This allows the flow of ions between the inside and the outside of the cell, which causes an electrical current that triggers muscle contraction. To better understand the causes behind this muscle weakness, Myers et al. used mice that had either been genetically manipulated or given drugs to mimic Becker disease. By measuring both muscle force and the electrical currents that drive contraction, Myers et al. found that the mechanism underlying post-movement weakness involved a transient change in the concentrations of positively charged ions inside and outside the cells. Further experiments showed that proteins that regulate the passage of both sodium and calcium in and out of the cell ­ called sodium and calcium channels ­ contributed to this change in concentration. In addition, Myers et al. discovered that using a drug called ranolazine to stop sodium ions from entering the cell eliminated transient weakness in live mice. These findings suggest that in Becker disease, muscles cycle rapidly between being hyperexcited or not able to be excited, and that targeting the flow of sodium ions into the cell could be an effective treatment to prevent transient weakness in myotonia congenita. This study paves the way towards the development of new therapies to treat Becker disease as well as other muscle ion channel diseases with transient weakness such as periodic paralysis.


Assuntos
Potenciais da Membrana/fisiologia , Miotonia Congênita/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Sódio/fisiologia
5.
J Clin Invest ; 117(10): 2825-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17909626

RESUMO

Following myocardial infarction, nonischemic myocyte death results in infarct expansion, myocardial loss, and ventricular dysfunction. Here, we demonstrate that a specific proapoptotic gene, Bnip3, minimizes ventricular remodeling in the mouse, despite having no effect on early or late infarct size. We evaluated the effects of ablating Bnip3 on cardiomyocyte death, infarct size, and ventricular remodeling after surgical ischemia/reperfusion (IR) injury in mice. Immediately following IR, no significant differences were observed between Bnip3(-/-) and WT mice. However, at 2 days after IR, apoptosis was diminished in Bnip3(-/-) periinfarct and remote myocardium, and at 3 weeks after IR, Bnip3(-/-) mice exhibited preserved LV systolic performance, diminished LV dilation, and decreased ventricular sphericalization. These results suggest myocardial salvage by inhibition of apoptosis. Forced cardiac expression of Bnip3 increased cardiomyocyte apoptosis in unstressed mice, causing progressive LV dilation and diminished systolic function. Conditional Bnip3 overexpression prior to coronary ligation increased apoptosis and infarct size. These studies identify postischemic apoptosis by myocardial Bnip3 as a major determinant of ventricular remodeling in the infarcted heart, suggesting that Bnip3 may be an attractive therapeutic target.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas Mitocondriais/fisiologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Remodelação Ventricular/genética , Animais , Apoptose/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Miócitos Cardíacos/metabolismo
6.
Apoptosis ; 13(8): 1022-30, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18584327

RESUMO

Erythrocyte production is regulated by balancing precursor cell apoptosis and survival signaling. Previously, we found that BH3-only proapoptotic factor, Nix, opposed erythroblast-survival signaling by erythropoietin-induced Bcl-xl during normal erythrocyte formation. Since erythropoietin treatment of human anemia has limitations, we explored the therapeutic potential of abrogating Nix-mediated erythroblast apoptosis to enhance erythrocyte production. Nix gene ablation blunted the phenylhydrazine-induced fall in blood count, enhanced hematocrit recovery, and reduced erythroblast apoptosis, despite lower endogenous erythropoietin levels. Similar to erythropoietin, Nix ablation increased early splenic erythroblasts and circulating reticulocytes, while maintaining a pool of mature erythroblasts as erythropoietic reserve. Erythrocytes in Nix-deficient mice showed morphological abnormalities, suggesting that apoptosis during erythropoiesis not only controls red blood cell number, but also serves a "triage" function, preferentially eliminating abnormal erythrocytes. These results support the concept of targeting erythroblast apoptosis to maximize erythrocyte production in acute anemia, which may be of value in erythropoietin resistance.


Assuntos
Anemia/tratamento farmacológico , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Eritroblastos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Anemia/induzido quimicamente , Anemia/fisiopatologia , Animais , Apoptose/fisiologia , Medula Óssea/patologia , Medula Óssea/fisiopatologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Eritroblastos/metabolismo , Eritroblastos/patologia , Contagem de Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritropoetina/sangue , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Marcação de Genes , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Oxidantes/farmacologia , Fenil-Hidrazinas/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética
7.
Proc Natl Acad Sci U S A ; 104(16): 6794-9, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17420462

RESUMO

Normal production of RBCs requires that the antiapoptotic protein Bcl-xl be induced at end stages of differentiation in response to erythropoietin (Epo) signaling. The critical proapoptotic pathways inhibited by Bcl-xl in erythroblasts are unknown. We used gene targeting in the mouse to evaluate the BH3-only factor Nix, which is transcriptionally up-regulated during Epo-stimulated in vitro erythrocyte differentiation. Nix null mice are viable and fertile. Peripheral blood counts revealed a profound reticulocytosis and thrombocytosis despite normal serum Epo levels and blood oxygen tension. Nix null mice exhibited massive splenomegaly, with splenic and bone marrow erythroblastosis and reduced apoptosis in vivo during erythrocyte maturation. Hematopoietic progenitor populations were unaffected. Cultured Nix null erythroid cells were hypersensitive to Epo and resistant to apoptosis stimulated by cytokine deprivation and calcium ionophore. Transcriptional profiling of Nix null spleens revealed increased expression of cell cycle and erythroid genes, including Bcl-xl, and diminished expression of cell death and B cell-related genes. Thus, cell-autonomous Nix-mediated apoptosis in opposition to the Epo-induced erythroblast survival pathway appears indispensable for regulation of erythrocyte production and maintenance of hematological homeostasis. These results suggest that physiological codependence and coordinated regulation of pro- and antiapoptotic Bcl2 family members may represent a general regulatory paradigm in hematopoiesis.


Assuntos
Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Eritroblastos/patologia , Eritrócitos Anormais/patologia , Eritropoese/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Eritroblastos/metabolismo , Eritrócitos Anormais/metabolismo , Eritropoetina/fisiologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/fisiologia , Permeabilidade , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA