Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Faraday Discuss ; 249(0): 440-452, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791511

RESUMO

We examine quantitatively the solute-size dependences of the effective interactions between nonpolar solutes in water and in a simple liquid. The potential w(r) of mean force and the osmotic second virial coefficients B are calculated with high accuracy from molecular dynamics simulations. As the solute diameter increases from methane's to C60's with the solute-solute and solute-solvent attractive interaction parameters fixed to those for the methane-methane and methane-water interactions, the first minimum of w(r) lowers from -1.1 to -4.7 in units of the thermal energy kT. Correspondingly, the magnitude of B (<0) increases proportional to σα with some power close to 6 or 7, which reinforces the solute-size dependence of B found earlier for a smaller range of σ [H. Naito, R. Okamoto, T. Sumi and K. Koga, J. Chem. Phys., 2022, 156, 221104]. We also demonstrate that the strength of the attractive interactions between solute and solvent molecules can qualitatively change the characteristics of the effective pair interaction between solute particles, both in water and in a simple liquid. If the solute-solvent attractive force is set to be weaker (stronger) than a threshold, the effective interaction becomes increasingly attractive (repulsive) with increasing solute size.

2.
Phys Chem Chem Phys ; 25(45): 31107-31117, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947179

RESUMO

Solvation free energies µ* of amphiphilic species, methanol and 1,2-hexanediol, are obtained as a function of temperature or pressure based on molecular dynamics simulations combined with efficient free-energy calculation methods. In general, µ* of an amphiphile can be divided into and , the nonpolar and electrostatic contributions, and the former is further divided into and which are the work of cavity formation process and the free energy change due to weak, attractive interactions between the solute molecule and surrounding solvent molecules. We demonstrate that µ* of the two amphiphilic solutes can be obtained accurately using a perturbation combining method, which relies on the exact expressions for and and requires no simulations of intermediate systems between the solute with strong, repulsive interactions and the solute with the van der Waals and electrostatic interactions. The decomposition of µ* gives us several physical insights including that µ* is an increasing function of T due to , that the contributions of hydrophilic groups to the temperature dependence of µ* are additive, and that the contribution of the van der Waals attraction to the solvation volume is greater than that of the electrostatic interactions.

3.
Phys Rev Lett ; 129(22): 224501, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493454

RESUMO

The dihedral contact angles between interfaces in three-fluid-phase equilibria must be continuous functions of the bulk thermodynamic fields. This general argument, which we propose, predicts a nonwetting gap in the phase diagram, challenging the common belief in "critical-point wetting," even for short-range forces. A demonstration is provided by exact solution of a mean-field two-density functional theory for three-phase equilibria near a tricritical point (TCP). Complete wetting is found in a tiny vicinity of the TCP. Away from it, nonwetting prevails and no wetting transition takes place, not even when a critical endpoint is approached. Far from the TCP, reentrant wetting may occur, with a different wetting phase. These findings shed light on hitherto unexplained experiments on ternary H_{2}O-oil-nonionic amphiphile mixtures in which nonwetting continues to exist as one approaches either one of the two critical endpoints.


Assuntos
Molhabilidade , Termodinâmica
4.
J Chem Phys ; 156(22): 221104, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705398

RESUMO

To gain quantitative insight into how the overall strength of the hydrophobic interaction varies with the molecular size, we calculate osmotic second virial coefficients B for hydrophobic spherical molecules of different diameters σ in water based on molecular simulation with corrections to the finite-size and finite-concentration effects. It is shown that B (<0) changes by two orders of magnitude greater as σ increases twofold and its solute-size dependence is best fit by a power law B ∝ σα with the exponent α ≃ 6, which contrasts with the cubic power law that the second virial coefficients of gases obey. It is also found that values of B for the solutes in a nonpolar solvent are positive but they obey the same power law as in water. A thermodynamic identity for B derived earlier [K. Koga, V. Holten, and B. Widom, J. Phys. Chem. B 119, 13391 (2015)] indicates that if B is asymptotically proportional to a power of σ, the exponent α must be equal to or greater than 6.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Osmose , Soluções/química , Termodinâmica , Água/química
5.
J Chem Phys ; 153(11): 114501, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962394

RESUMO

We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII-plastic ice transitions are observed.

6.
J Chem Phys ; 153(7): 074503, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828079

RESUMO

We present a continuum theory of electrolytes composed of a waterlike solvent and univalent ions. First, we start with a density functional F for the coarse-grained solvent, cation, and anion densities, including the Debye-Hückel free energy, the Coulombic interaction, and the direct interactions among these three components. These densities fluctuate obeying the distribution ∝exp(-F/kBT). Eliminating the solvent density deviation in F, we obtain the effective non-Coulombic interactions among the ions, which consist of the direct ones and the solvent-mediated ones. We then derive general expressions for the ion correlation, the apparent partial volume, and the activity and osmotic coefficients up to linear order in the average salt density ns. Second, we perform numerical analysis using the Mansoori-Carnahan-Starling-Leland model [J. Chem. Phys. 54, 1523 (1971)] for three-component hardspheres. The effective interactions sensitively depend on the cation and anion sizes due to competition between the steric and hydration effects, which are repulsive between small-large ion pairs and attractive between symmetric pairs. These agree with previous experiments and Collins' rule [Biophys. J. 72, 65 (1997)]. We also give simple approximate expressions for the ionic interaction coefficients valid for any ion sizes.

10.
J Chem Phys ; 150(16): 164701, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31042902

RESUMO

A mean-field density-functional model for three-phase equilibria in fluids (or other soft condensed matter) with two spatially varying densities is analyzed analytically and numerically. The interfacial tension between any two out of three thermodynamically coexisting phases is found to be captured by a surprisingly simple analytic expression that has a geometric interpretation in the space of the two densities. The analytic expression is based on arguments involving symmetries and invariances. It is supported by numerical computations of high precision, and it agrees with earlier conjectures obtained for special cases in the same model. An application is presented to three-phase equilibria in the vicinity of a tricritical point. Using the interfacial tension expression and employing the field variables compatible with tricritical point scaling, the expected mean-field critical exponent is derived for the vanishing of the critical interfacial tension as a function of the deviation of the noncritical interfacial tension from its limiting value, upon approach to a critical endpoint in the phase diagram. The analytic results are again confirmed by numerical computations of high precision.

11.
J Comput Chem ; 39(4): 202-217, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116647

RESUMO

Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc.

12.
Proc Natl Acad Sci U S A ; 112(27): 8221-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100904

RESUMO

Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

13.
Gan To Kagaku Ryoho ; 45(7): 1101-1103, 2018 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-30042281

RESUMO

Metaplastic carcinoma is a rare type of breast carcinoma, which tends to be chemo-resistant. We report a case of metaplastic squamous cell carcinoma of the breast diagnosed after neoadjuvant chemotherapy(NAC). A 56-year-old woman was diagnosed as having right-sided breast cancer(invasive ductal carcinoma[IDC], triple negative), cT1cN1M0, stage II A. NAC with 5-fluorouracil, epirubicin, and cyclophosphamide(FEC)followed by docetaxel(DTX)was administered. Tumor progression occurred during both the FEC and DTX regimens. We discontinued NAC and performed breast conserving surgery with axillary lymph node dissection. Histological findings of the resected specimen showed mixed IDC and widely spread squamous metaplasia. Weekly paclitaxel and radiotherapy were administered and the patient is alive with no recurrence 3 years after surgery.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Terapia Neoadjuvante , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/cirurgia , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Mastectomia Segmentar , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Phys Chem Chem Phys ; 19(35): 23915-23918, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28840204

RESUMO

We demonstrate by molecular dynamics simulation that co-non-solvency manifests itself in the solvent-induced interaction between three hydrophobes, methane, propane and neopentane, in methanol-water mixtures. Decomposition of the potential of mean force, based on the potential distribution theorem, clearly shows that the solute-solvent entropic change is responsible for stabilizing the aggregation of these hydrophobic molecules. Furthermore, we show that the entropic change pertains to the excluded volume effect.

15.
Phys Chem Chem Phys ; 18(24): 16188-95, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251342

RESUMO

The molecular origin of cononsolvency behavior is explored using molecular dynamics simulations. Cononsolvency behavior in aggregations of methane molecules and conformational changes of those clusters dissolved in water + methanol mixtures are confirmed by re-entrant changes in the solvent-mediated interactions with increasing methanol concentration. The results indicate that the cononsolvency behavior arises from the solute-solute hydrophobic interactions rather than other interactions such as solute-solvent hydrophilic interactions. Furthermore, we show that even the van der Waals interaction is not necessary to induce the cononsolvency behavior by investigating the dimerization process of repulsive cavities. The non-monotonic change of the solvent-mediated interaction results from the difference in the concentration dependencies of excess chemical potentials between an isolated methane and methane clusters. The concentration dependencies of the excess chemical potentials are decomposed into contributions from various intermolecular effective interactions through the framework of the Kirkwood-Buff theory, and then we show that the change of the relative magnitude between hydrophobe-methanol and hydrophobe-water effective interactions with increasing methanol concentration is responsible for the cononsolvency behavior.

16.
Phys Chem Chem Phys ; 18(6): 4697-703, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26800368

RESUMO

Driving forces for the pressure-induced aggregation of poly(N-isopropylacrylamide) (PNiPA) in water are investigated by performing extensive molecular dynamics simulations. First, we observe that the model short oligomer of PNiPA with a modified OPLS-AA force field in water shrinks with increasing pressure. At varying pressures, the potentials of mean force (PMFs) between a pair of N-isopropylpropionamide (NiPPA) molecules, the repeating unit of PNiPA, are obtained and decomposed into the nonpolar and Coulombic contributions. The nonpolar contribution is the PMF between the hypothetical nonpolar NiPPA molecules in the solvent, which is mainly due to the molecular volume effect. The attractive force between NiPPA molecules is enhanced at higher pressures in agreement with the behavior of PNiPA. This pressure dependence of the PMF is caused by the growing nonpolar contribution at higher pressures. In contrast, the Coulombic contribution to the PMF becomes higher overall, making the mean force less attractive or more repulsive, with increasing pressure. The strength of the aggregation and its pressure dependence of the nonpolar contribution in water are closely reproduced even in nonpolar solvents. The degree of the pressure dependence is explained by the isothermal compressibility or the tightness of the solvation shell around an isolated solute, without regard to the existence and variation of hydrogen bond networks in a solvent. The role of hydrogen bonds in the aggregation of NiPPA and PNiPA molecules is also discussed.


Assuntos
Resinas Acrílicas/química , Água/química , Simulação de Dinâmica Molecular , Pressão , Soluções/química , Solventes/química
17.
J Chem Phys ; 144(22): 224104, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27305993

RESUMO

In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

18.
Phys Chem Chem Phys ; 17(28): 18437-42, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26107091

RESUMO

Extensive molecular dynamics simulations have been performed to study the phase behavior of Lennard-Jones particles confined in a quasi-one-dimensional hydrophobic nanopore. We provide unambiguous evidence for a solid-liquid critical point by investigating (i) isotherms in the pressure-volume plane, (ii) the spontaneous solid-liquid phase separation below a certain temperature, (iii) diverging heat capacity and isothermal compressibility as a certain point is approached, (iv) continuous change of dynamical and structural properties above the point, (v) the finite-size scaling analysis of the density distribution below and above the point. The result combined with earlier studies of confined water suggests that the solid-liquid critical point is not uncommon in quasi-one- and quasi-two-dimensional fluids.

19.
J Chem Phys ; 141(18): 18C516, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399181

RESUMO

One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

20.
ACS Nano ; 18(1): 347-354, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109520

RESUMO

Water molecules in any of the ice polymorphs organize themselves into a perfect four-coordinated hydrogen-bond network at the expense of dense packing. Even at high pressures, there seems to be no way to reconcile the ice rules with the close packing. Here, we report several close-packed ice phases in carbon nanotubes obtained from molecular dynamics simulations of two different water models. Typically they are in plastic states at high temperatures and are transformed into the hydrogen-ordered ice, keeping their close-packed structures at lower temperatures. The close-packed structures of water molecules in carbon nanotubes are identified with those of spheres in a cylinder. We present design principles of hydrogen-ordered, close-packed structures of ice in nanotubes, which suggest many possible dense ice forms with or without nonzero polarization. In fact, some of the simulated ices are found to exhibit ferroelectric ordering upon cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA