Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431249

RESUMO

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Assuntos
Sistema de Condução Cardíaco , Macrófagos/fisiologia , Animais , Conexina 43/metabolismo , Feminino , Átrios do Coração/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/fisiologia
2.
Physiol Rev ; 101(1): 37-92, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32380895

RESUMO

The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ?what makes the heart tick.Ë®.


Assuntos
Frequência Cardíaca/fisiologia , Coração/fisiologia , Estimulação Física , Animais , Arritmias Cardíacas/fisiopatologia , Relógios Biológicos , Humanos , Miocárdio/citologia , Miócitos Cardíacos/fisiologia
3.
J Mol Cell Cardiol ; 187: 1-14, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103633

RESUMO

BACKGROUND: Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS: Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS: On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.


Assuntos
Sistema de Condução Cardíaco , Miocárdio , Camundongos , Animais , Miocárdio/metabolismo , Arritmias Cardíacas/metabolismo , Átrios do Coração , Sistema Nervoso Parassimpático
4.
J Physiol ; 602(18): 4437-4456, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38642051

RESUMO

Macrophages (MΦ) play pivotal roles in tissue homeostasis and repair. Their mechanical environment has been identified as a key modulator of various cell functions, and MΦ mechanosensitivity is likely to be critical - in particular in a rhythmically contracting organ such as the heart. Cultured MΦ, differentiated in vitro from bone marrow (MΦBM), form a popular research model. This study explores the activity of mechanosensitive ion channels (MSC) in murine MΦBM and compares it to MSC activity in MΦ enzymatically isolated from cardiac tissue (tissue-resident MΦ; MΦTR). We show that MΦBM and MΦTR have stretch-induced currents, indicating the presence of functional MSC in their plasma membrane. The current profiles in MΦBM and in MΦTR show characteristics of cation non-selective MSC such as Piezo1 or transient receptor potential channels. While Piezo1 ion channel activity is detectable in the plasma membrane of MΦBM using the patch-clamp technique, or by measuring cytosolic calcium concentration upon perfusion with the Piezo1 channel agonist Yoda1, no Piezo1 channel activity was observed in MΦTR. The selective transient receptor potential vanilloid 4 (TRPV4) channel agonist GSK1016790A induces calcium entry in MΦTR and in MΦBM. In MΦ isolated from left-ventricular scar tissue 28 days after cryoablation, stretch-induced current characteristics are not significantly different compared to non-injured control tissue, even though scarred ventricular tissue is expected to be mechanically remodelled and to contain an altered composition of pre-existing cardiac and circulation-recruited MΦ. Our data suggest that the in vitro differentiation protocols used to obtain MΦBM generate cells that differ from MΦ recruited from the circulation during tissue repair in vivo. Further investigations are needed to explore MSC identity in lineage-traced MΦ in scar tissue, and to compare mechanosensitivity of circulating monocytes with that of MΦBM. KEY POINTS: Bone marrow-derived (MΦBM) and tissue resident (MΦTR) macrophages have stretch-induced currents, indicating expression of functional mechanosensitive channels (MSC) in their plasma membrane. Stretch-activated current profiles show characteristics of cation non-selective MSC; and mRNA coding for MSC, including Piezo1 and TRPV4, is expressed in murine MΦBM and in MΦTR. Calcium entry upon pharmacological activation of TRPV4 confirms functionality of the channel in MΦTR and in MΦBM. Piezo1 ion channel activity is detected in the plasma membrane of MΦBM but not in MΦTR, suggesting that MΦBM may not be a good model to study the mechanotransduction of MΦTR. Stretch-induced currents, Piezo1 mRNA expression and response to pharmacological activation are not significantly changed in cardiac MΦ 28 days after cryoinjury compared to sham operated mice.


Assuntos
Canais Iônicos , Macrófagos , Camundongos Endogâmicos C57BL , Miocárdio , Animais , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Macrófagos/fisiologia , Macrófagos/metabolismo , Camundongos , Miocárdio/metabolismo , Miocárdio/citologia , Células da Medula Óssea/fisiologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia , Células Cultivadas , Masculino , Mecanotransdução Celular/fisiologia
5.
J Physiol ; 602(5): 791-808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348881

RESUMO

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.


Assuntos
Miócitos Cardíacos , Optogenética , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Membrana Celular , Potenciais da Membrana , Potenciais de Ação/fisiologia
6.
Am J Physiol Heart Circ Physiol ; 325(3): H475-H491, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417876

RESUMO

Although cardiac action potential (AP) generation and propagation have traditionally been attributed exclusively to cardiomyocytes (CM), other cell types in the heart are also capable of forming electrically conducting junctions. Interactions between CM and nonmyocytes (NM) enable and modulate each other's activity. This review provides an overview of the current understanding of heterocellular electrical communication in the heart. Although cardiac fibroblasts were initially thought to be electrical insulators, recent studies have demonstrated that they form functional electrical connections with CM in situ. Other NM, such as macrophages, have also been recognized as contributing to cardiac electrophysiology and arrhythmogenesis. Novel experimental tools have enabled the investigation of cell-specific activity patterns in native cardiac tissue, which is expected to yield exciting new insights into the development of novel or improved diagnostic and therapeutic strategies.


Assuntos
Fibroblastos , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Arritmias Cardíacas/metabolismo , Potenciais de Ação , Fenômenos Eletrofisiológicos
7.
Basic Res Cardiol ; 118(1): 30, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495826

RESUMO

The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables  identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.


Assuntos
Cardiologia , Células Endoteliais , Miócitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Junções Comunicantes
8.
Circ Res ; 128(2): 203-215, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33228470

RESUMO

RATIONALE: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates. OBJECTIVE: We postulate that there may be an advective component to TT content exchange, wherein cyclic deformation of TT during diastolic stretch and systolic shortening serves to mix TT luminal content and assists equilibration with bulk extracellular fluid. METHODS AND RESULTS: Using electron tomography, we explore the 3-dimensional nanostructure of TT in rabbit ventricular myocytes, preserved at different stages of the dynamic cycle of cell contraction and relaxation. We show that cellular deformation affects TT shape in a sarcomere length-dependent manner and on a beat-by-beat time-scale. Using fluorescence recovery after photobleaching microscopy, we show that apparent speed of diffusion is affected by the mechanical state of cardiomyocytes, and that cyclic contractile activity of cardiomyocytes accelerates TT diffusion dynamics. CONCLUSIONS: Our data confirm the existence of an advective component to TT content exchange. This points toward a novel mechanism of cardiac autoregulation, whereby the previously implied increased propensity for TT luminal concentration imbalances at high electrical stimulation rates would be countered by elevated advection-assisted diffusion at high mechanical beating rates. The relevance of this mechanism in health and during pathological remodeling (eg, cardiac hypertrophy or failure) forms an exciting target for further research.


Assuntos
Acoplamento Excitação-Contração , Frequência Cardíaca , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Potenciais de Ação , Animais , Difusão , Tomografia com Microscopia Eletrônica , Feminino , Recuperação de Fluorescência Após Fotodegradação , Miócitos Cardíacos/ultraestrutura , Coelhos , Sarcolema/ultraestrutura
9.
Eur Arch Otorhinolaryngol ; 280(10): 4657-4664, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354339

RESUMO

OBJECTIVES: Examination of lymph nodes is one of the most common indications for imaging in the head and neck region. The purpose of this study is to evaluate whether multispectral optoacoustic tomography can be used to observe chromophore differences between benign and malignant neck lymph nodes. MATERIALS AND METHODS: Proof-of-concept ex vivo study of resected cervical lymph nodes from 11 patients. The examination of lymph nodes included imaging with hybrid ultrasound and multispectral tomography system followed by spectral unmixing to separate signals from the endogenous chromophores water, lipid, hemoglobin and oxygenated hemoglobin; calculation of semi-quantitative parameters (total hemoglobin and relative oxygenation of hemoglobin). Comparison of the results from the hybrid measurement with the histopathological results. RESULTS: Most patients suffered from squamous cell carcinoma (n = 7), also metastasis from salivary gland adenocarcinoma and papillary thyroid carcinoma, were included. The comparison between benign cervical lymph nodes and metastases showed significant differences for the absorbers water, lipid, hemoglobin and oxygenated hemoglobin and total hemoglobin. CONCLUSIONS: Our ex vivo study suggests that multispectral optoacoustic tomography can be used to detect differences between reactive lymph nodes and metastases. The measurement of endogenous chromophores can be used for this purpose. The examinations are non-invasively and thus potentially improve diagnostic prediction. However, potential influences from the ex vivo setting must be considered.


Assuntos
Linfonodos , Neoplasias da Glândula Tireoide , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Tomografia/métodos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Hemoglobinas , Lipídeos
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446137

RESUMO

The cardiac cell mechanical environment changes on a beat-by-beat basis as well as in the course of various cardiac diseases. Cells sense and respond to mechanical cues via specialized mechano-sensors initiating adaptive signaling cascades. With the aim of revealing new candidates underlying mechano-transduction relevant to cardiac diseases, we investigated mechano-sensitive ion channels (MSC) in human hearts for their chamber- and disease-preferential mRNA expression. Based on a meta-analysis of RNA sequencing studies, we compared the mRNA expression levels of MSC in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and from patients in sinus rhythm (underlying diseases: heart failure, coronary artery disease, heart valve disease) or with atrial fibrillation. Our results suggest that a number of MSC genes are expressed chamber preferentially, e.g., CHRNE in the atria (compared to the ventricles), TRPV4 in the right atrium (compared to the left atrium), CACNA1B and KCNMB1 in the left atrium (compared to the right atrium), as well as KCNK2 and KCNJ2 in ventricles (compared to the atria). Furthermore, 15 MSC genes are differentially expressed in cardiac disease, out of which SCN9A (lower expressed in heart failure compared to donor tissue) and KCNQ5 (lower expressed in atrial fibrillation compared to sinus rhythm) show a more than twofold difference, indicative of possible functional relevance. Thus, we provide an overview of cardiac MSC mRNA expression in the four cardiac chambers from patients with different cardiac diseases. We suggest that the observed differences in MSC mRNA expression may identify candidates involved in altered mechano-transduction in the respective diseases.


Assuntos
Fibrilação Atrial , Cardiopatias , Insuficiência Cardíaca , Transplante de Coração , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Doadores de Tecidos , Átrios do Coração/metabolismo , Ventrículos do Coração , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Cardiopatias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
11.
J Mol Cell Cardiol ; 166: 127-136, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248551

RESUMO

Efficient pumping of the healthy left ventricle (LV) requires heterogeneities in mechanical function of individual cardiomyocytes (CM). Deformation of sub-endocardial (Endo) tissue is greater than that of sub-epicardial (Epi) regions. Papillary muscles (PM), often considered to be part of Endo tissue, show lower beat-by-beat length variation than Epi (or Endo) regions, even though they contribute to the shift in atrio-ventricular valve plane, which is essential for LV pump function. Thus far, no comparative assessment of CM mechanics for PM and LV free wall has been published. Here, we investigate contractility and cytosolic calcium concentration ([Ca2+]c) transients in rabbit single CM, freshly isolated from PM, Endo and Epi regions of the LV (free wall tissue was further subdivided into near-basal [Base], equatorial [Centre], and near-apical [Apex] parts). Functional parameters were measured in the absence of external mechanical loads (non-loaded), or during afterloaded (auxotonic) CM contractions, initiated from different levels of preload (diastolic axial stretch), using the carbon fibre technique. We note significant differences in time-course and amplitudes of sarcomere shortening between PM, Endo and Epi CM. In non-loaded CM, sarcomere shortening between regions compares as follows: Endo > Epi and Endo > PM. During afterloaded contractions, the slope of auxotonic tension-length relation and the Frank-Starling gain index (preload-dependent increase in tension and shortening) follow the sequence of Endo > Epi > PM. In terms of apico-basal gradients, time-to-peak sarcomere shortening was greater in Apex compared to Centre and Base in non-loaded CM only. Thus, CM from PM show the least pronounced preload-dependent activation of force across the LV regions assessed, while CM from Endo regions show the strongest response. This is in keeping with prior in situ observations on the smaller extent of PM shortening and their thus lower functional requirement for sensitivity to preload, compared to LV free wall. The here identified regional differences in cellular Frank-Starling responses illustrate the extent to which CM mechanical responses appear to be in keeping with in situ differences in mechanical demand.


Assuntos
Ventrículos do Coração , Miócitos Cardíacos , Animais , Endocárdio/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Músculos Papilares , Coelhos
12.
Cell Mol Life Sci ; 78(19-20): 6669-6687, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557935

RESUMO

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-ß, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.


Assuntos
Genoma/genética , Valvas Cardíacas/fisiologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica/métodos , Defeitos dos Septos Cardíacos/genética , Miocárdio/patologia , Organogênese/genética , Marca-Passo Artificial , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética
13.
J Mol Cell Cardiol ; 158: 49-62, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33974928

RESUMO

AIMS: Atrial Fibrillation (AF) is an arrhythmia of increasing prevalence in the aging populations of developed countries. One of the important indicators of AF is sustained atrial dilatation, highlighting the importance of mechanical overload in the pathophysiology of AF. The mechanisms by which atrial cells, including fibroblasts, sense and react to changing mechanical forces, are not fully elucidated. Here, we characterise stretch-activated ion channels (SAC) in human atrial fibroblasts and changes in SAC- presence and activity associated with AF. METHODS AND RESULTS: Using primary cultures of human atrial fibroblasts, isolated from patients in sinus rhythm or sustained AF, we combine electrophysiological, molecular and pharmacological tools to identify SAC. Two electrophysiological SAC- signatures were detected, indicative of cation-nonselective and potassium-selective channels. Using siRNA-mediated knockdown, we identified the cation-nonselective SAC as Piezo1. Biophysical properties of the potassium-selective channel, its sensitivity to calcium, paxilline or iberiotoxin (blockers), and NS11021 (activator), indicated presence of calcium-dependent 'big potassium channels' (BKCa). In cells from AF patients, Piezo1 activity and mRNA expression levels were higher than in cells from sinus rhythm patients, while BKCa activity (but not expression) was downregulated. Both Piezo1-knockdown and removal of extracellular calcium from the patch pipette resulted in a significant reduction of BKCa current during stretch. No co-immunoprecipitation of Piezo1 and BKCa was detected. CONCLUSIONS: Human atrial fibroblasts contain at least two types of ion channels that are activated during stretch: Piezo1 and BKCa. While Piezo1 is directly stretch-activated, the increase in BKCa activity during mechanical stimulation appears to be mainly secondary to calcium influx via SAC such as Piezo1. During sustained AF, Piezo1 is increased, while BKCa activity is reduced, highlighting differential regulation of both channels. Our data support the presence and interplay of Piezo1 and BKCa in human atrial fibroblasts in the absence of physical links between the two channel proteins.


Assuntos
Arritmia Sinusal/metabolismo , Fibrilação Atrial/metabolismo , Remodelamento Atrial/genética , Átrios do Coração/metabolismo , Canais Iônicos/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Arritmia Sinusal/patologia , Arritmia Sinusal/cirurgia , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Remodelamento Atrial/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Átrios do Coração/patologia , Humanos , Indóis/farmacologia , Canais Iônicos/genética , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tetrazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Transfecção
14.
Europace ; 23(23 Suppl 1): i38-i47, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33404047

RESUMO

AIMS: Patients with tetralogy of Fallot (TOF) are often affected by right ventricular fibrosis, which has been associated with arrhythmias. This study aimed to assess fibrosis distribution in right ventricular outflow tract (RVOT) myocardium of TOF patients to evaluate the utility of single histology-section analyses, and to explore the possibility of fibrosis quantification in unlabelled tissue by second harmonic generation imaging (SHGI) as an alternative to conventional histology-based assays. METHODS AND RESULTS: We quantified fibrosis in 11 TOF RVOT samples, using a tailor-made automated image analysis method on Picrosirius red-stained sections. In a subset of samples, histology- and SHGI-based fibrosis quantification approaches were compared. Fibrosis distribution was highly heterogeneous, with significant and comparable variability between and within samples. We found that, on average, 67.8 mm2 of 10 µm thick, histologically processed tissue per patient had to be analysed for accurate fibrosis quantification. SHGI provided data faster and on live tissue, additionally enabling quantification of collagen anisotropy. CONCLUSION: Given the high intra-individual heterogeneity, fibrosis quantification should not be conducted on single sections of TOF RVOT myectomies. We provide an analysis algorithm for fibrosis quantification in histological images, which enables the required extended volume analyses in these patients.


Assuntos
Tetralogia de Fallot , Colágeno , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Humanos , Miocárdio , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia
15.
Proc Natl Acad Sci U S A ; 115(30): E7073-E7080, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29991602

RESUMO

Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and <50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/citologia , Coelhos
16.
J Physiol ; 598(7): 1285-1305, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31789427

RESUMO

Cardiac excitation-contraction (E-C) coupling is influenced by (at least) three dynamic systems that couple and feedback to one another (see Abstract Figure). Here we review the mechanical effects on cardiomyocytes that include mechano-electro-transduction (commonly referred to as mechano-electric coupling, MEC) and mechano-chemo-transduction (MCT) mechanisms at cell and molecular levels which couple to Ca2+ -electro and E-C coupling reviewed elsewhere. These feedback loops from muscle contraction and mechano-transduction to the Ca2+ homeodynamics and to the electrical excitation are essential for understanding the E-C coupling dynamic system and arrhythmogenesis in mechanically loaded hearts. This white paper comprises two parts, each reflecting key aspects from the 2018 UC Davis symposium: MEC (how mechanical load influences electrical dynamics) and MCT (how mechanical load alters cell signalling and Ca2+ dynamics). Of course, such separation is artificial since Ca2+ dynamics profoundly affect ion channels and electrogenic transporters and vice versa. In time, these dynamic systems and their interactions must become fully integrated, and that should be a goal for a comprehensive understanding of how mechanical load influences cell signalling, Ca2+ homeodynamics and electrical dynamics. In this white paper we emphasize current understanding, consensus, controversies and the pressing issues for future investigations. Space constraints make it impossible to cover all relevant articles in the field, so we will focus on the topics discussed at the symposium.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Arritmias Cardíacas , Acoplamento Excitação-Contração , Humanos
17.
Basic Res Cardiol ; 115(6): 78, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33296022

RESUMO

Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.


Assuntos
Aterosclerose/terapia , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica , Animais , Apolipoproteína E3/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Receptores de LDL/genética
18.
Circ Res ; 122(1): 58-73, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29092894

RESUMO

RATIONALE: Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS: Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Preparação de Coração Isolado/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
19.
Euro Surveill ; 25(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33063655

RESUMO

BackgroundEmerging antimicrobial resistance (AMR) challenges gonorrhoea treatment and requires surveillance.AimThis observational study describes the genetic diversity of Neisseria gonorrhoeae isolates in Germany from 2014 to 2017 and identifies N. gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroups associated with AMR or some patient demographics.Methods1,220 gonococcal isolates underwent AMR testing and NG-MAST. Associations between genogroups and AMR or sex/age of patients were statistically assessed.ResultsPatients' median age was 32 years (interquartile range: 25-44); 1,078 isolates (88.4%) originated from men. In total, 432 NG-MAST sequence types including 156 novel ones were identified, resulting in 17 major genogroups covering 59.1% (721/1,220) of all isolates. Genogroups G1407 and G10557 (G7072) were significantly associated with decreased susceptibility to cefixime (Kruskal-Wallis chi-squared: 549.3442, df: 16, p < 0.001). Their prevalences appeared to decline during the study period from 14.2% (15/106) to 6.2% (30/481) and from 6.6% (7/106) to 3.1% (15/481) respectively. Meanwhile, several cefixime susceptible genogroups' prevalence seemed to increase. Proportions of isolates from men differed among genogroups (Fisher's exact test, p < 0.001), being e.g. lower for G25 (G51) and G387, and higher for G5441 and G2992. Some genogroups differed relative to each other in affected patients' median age (Kruskal-Wallis chi-squared: 47.5358, df: 16, p < 0.001), with e.g. G25 (G51) and G387 more frequent among ≤ 30 year olds and G359 and G17420 among ≥ 40 year olds.ConclusionAMR monitoring with molecular typing is important. Dual therapy (ceftriaxone plus azithromycin) recommended in 2014 in Germany, or only the ceftriaxone dose of this therapy, might have contributed to cefixime-resistant genogroups decreasing.


Assuntos
Cefixima/farmacologia , Gonorreia/tratamento farmacológico , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/isolamento & purificação , Adulto , Cefixima/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Alemanha/epidemiologia , Gonorreia/epidemiologia , Humanos , Masculino , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Neisseria gonorrhoeae/efeitos dos fármacos , Filogenia , Prevalência
20.
Artigo em Alemão | MEDLINE | ID: mdl-32930821

RESUMO

In February 2019, the fourth expert meeting on rapid diagnostic tests (RDTs) for sexually transmitted infections (STI) was held at the Robert Koch Institute (RKI) in Berlin. Novel technical developments and new aspects of RDT applications were discussed by representatives from the German STI Society (DSTIG); RKI; the Paul Ehrlich Institute; national reference centers for HIV, HBV, and HCV; and reference laboratories for Chlamydia, gonococci, and Treponema pallidum.As a result of this meeting, we present a revision of the joint statement on STI diagnostics with RDTs from 2017. The Regulation (EU) 2017/746 of the European Parliament and of the Council on in vitro diagnostic medical devices became effective in May 2017 and includes more stringent regulatory requirements for RDTs, mainly concerning conformity of manufacturing processes and performance characteristics of class D in vitro diagnostics (detection of HIV, HBV, HCV, and T. pallidum). Some RDTs for HIV, HCV, and T. pallidum have been evaluated in clinical studies and/or were WHO prequalified and may be used in low-threshold services. Among them are some HIV RDTs available and approved for self-testing. In addition, some HBV RDTs based on detection of HBs antigen (HBsAg) received WHO prequalification. However, false negative results may occur in samples with low HBsAg levels, as for instance in HIV-coinfected patients receiving antiretroviral therapy. For Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), antigen-based RDTs still do not allow reliable detection of infection. Only PCR-based CT/NG RDTs possess sufficient diagnostic accuracy to be used as point-of-care tests. Rapid PCR tests for NG, however, do not provide any information about antimicrobial resistance.


Assuntos
Chlamydia , Infecções por HIV/diagnóstico , Hepatite C/diagnóstico , Infecções Sexualmente Transmissíveis/diagnóstico , Berlim , Alemanha , Vírus da Hepatite B , Humanos , Neisseria gonorrhoeae , Treponema pallidum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA