Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biol Pharm Bull ; 47(4): 758-763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569843

RESUMO

Enoxaparin and daikenchuto are commonly administered to prevent venous thromboembolism and intestinal obstruction after gynecological malignancy surgery. However, the effects of their combined use on hepatic function are not well studied. This study aimed to clarify the effects of the coadministration of enoxaparin and daikenchuto on hepatic function. First, Japanese Adverse Drug Event Report (JADER) data were analyzed to identify signals of hepatic disorders. Second, a retrospective observational study of patients who underwent surgery for gynecological malignancies was conducted. This study defined hepatic disorders as an increase in aspartate aminotransferase (AST) or alanine aminotransaminase (ALT) levels above the reference values, using 1-h postoperative values as the baseline. The analysis of JADER data revealed an increased risk for hepatic disorders with the coadministration of enoxaparin and daikenchuto. An observational study also showed higher odds ratios (95% confidence intervals) for the occurrence of hepatic disorders in the coadministration group (4.27; 2.11-8.64) and enoxaparin alone group (2.48; 1.31-4.69) than in the daikenchuto alone group. The median increase in the ALT level was also higher in the coadministration group (34; 15-59) than in the enoxaparin alone (19; 6-38) and daikenchuto alone groups (8; 3-33). In conclusion, our study suggests that compared with the use of enoxaparin or daikenchuto alone, enoxaparin and daikenchuto coadministration increases the risk of hepatic disorders, with more significant increases in AST and ALT levels. Healthcare workers need to be aware of these potential side effects when combining these drugs after surgery for gynecological malignancies.


Assuntos
Neoplasias dos Genitais Femininos , Panax , Extratos Vegetais , Zanthoxylum , Zingiberaceae , Feminino , Humanos , Enoxaparina/efeitos adversos , Neoplasias dos Genitais Femininos/cirurgia , Neoplasias dos Genitais Femininos/tratamento farmacológico , Anticoagulantes/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/tratamento farmacológico
2.
ACS Nano ; 16(7): 10589-10599, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758937

RESUMO

General synthesis of a highly oriented metallic heterodimer array based on a selective electrodeposition technique onto a metal nanoparticle-embedded carbon film is proposed, which enables the preparation of heterodimers with a wide variety of metal combinations. This method requires no surfactant, capping agent, organic solvent, or heat treatment. As a representative metal combination, a nickel (Ni)/palladium (Pd) heterodimer array was prepared by selective electrodeposition of Ni nanoparticles (Ni NPs) on top of partially exposed Pd NPs embedded in carbon film electrodes fabricated by a cosputtering technique. Such a selective electrodeposition becomes possible by utilizing the difference in electrodeposition overpotentials between carbon and Pd NP surfaces. X-ray photoelectron spectroscopy revealed a charge transfer from Ni NPs to Pd NPs, implying that the catalytic and optical properties can be expected to be controllable. The formed heterodimer array structure was mechanically stable against ultrasonication in ethanol for over 1 h because most parts of the Pd NPs were tightly embedded in the carbon film. After conversion from Ni to nickel hydroxide (Ni(OH)2), the electrode showed high electrocatalytic activity toward glucose oxidation, with a higher turnover rate and lower overpotential compared to Ni(OH)2 electrodeposited on pure carbon film electrodes.

3.
Breast Cancer Res ; 12(2): R17, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20205718

RESUMO

INTRODUCTION: Various agents used in breast cancer chemotherapy provoke DNA double-strand breaks (DSBs). DSB repair competence determines the sensitivity of cells to these agents whereby aberrations in the repair machinery leads to apoptosis. Proteins required for this pathway can be detected as nuclear foci at sites of DNA damage when the pathway is intact. Here we investigate whether focus formation of repair proteins can predict chemosensitivity of breast cancer. METHODS: Core needle biopsy specimens were obtained from sixty cases of primary breast cancer before and 18-24 hours after the first cycle of neoadjuvant epirubicin plus cyclophosphamide (EC) treatment. Nuclear focus formation of DNA damage repair proteins was immunohistochemically analyzed and compared with tumor response to chemotherapy. RESULTS: EC treatment induced nuclear foci of gammaH2AX, conjugated ubiquitin, and Rad51 in a substantial amount of cases. In contrast, BRCA1 foci were observed before treatment in the majority of the cases and only decreased after EC in thirteen cases. The presence of BRCA1-, gammaH2AX-, or Rad51-foci before treatment or the presence of Rad51-foci after treatment was inversely correlated with tumor response to chemotherapy. DNA damage response (DDR) competence was further evaluated by considering all four repair indicators together. A high DDR score significantly correlated with low tumor response to EC and EC + docetaxel whereas other clinicopathological factors analyzed did not. CONCLUSIONS: High performing DDR focus formation resulted in tumor resistance to DNA damage-inducing chemotherapy. Our results suggested an importance of evaluation of DDR competence to predict breast cancer chemosensitivity, and merits further studying into its usefulness in exclusion of non-responder patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Reparo do DNA , Proteínas/metabolismo , Adulto , Idoso , Proteína BRCA1/metabolismo , Biópsia por Agulha , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Ciclofosfamida/administração & dosagem , Dano ao DNA , Docetaxel , Epirubicina/administração & dosagem , Feminino , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Terapia Neoadjuvante , Avaliação de Resultados em Cuidados de Saúde/métodos , Valor Preditivo dos Testes , Prognóstico , Rad51 Recombinase/metabolismo , Taxoides/administração & dosagem , Ubiquitina/química , Ubiquitina/metabolismo
5.
J Med Food ; 22(4): 408-415, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30990754

RESUMO

Salmon milt extract contains high levels of nucleic acids and has antioxidant potential. Although salmon milt extract is known to improve impaired brain function in animal models with brain disease, its effects on learning and memory ability in healthy subjects is unknown. The purpose of the present study was to clarify the effect of hydrolyzed salmon milt extract (HSME) on object recognition and object location memory under normal conditions. A diet containing 2.5% HSME induced normal mice to devote more time to exploring novel and moved objects than in exploring familiar and unmoved objects, as observed during novel object recognition and spatial recognition tests, respectively. A diet containing 2.5% nucleic acid fraction purified from HSME also induced similar effects, as measured by the same behavioral tests. This suggests that the nucleic acids may be a functional component contributing to the effects of HSME on brain function. Quantitative polymerase chain reaction analysis revealed that gene expression of the markers for brain parenchymal cells, including neural stem cells, astrocytes, oligodendrocytes, and microglia, in the hippocampi of mice on an HSME diet was higher than that in mice on a control diet. Oral administration of HSME increased concentrations of cytosine, cytidine, and deoxycytidine in the hippocampus. Overall, ingestion of HSME may enhance object recognition and object location memory under normal conditions in mice, at least, in part, via the activation of brain parenchymal cells. Our results thus indicate that dietary intake of this easily ingestible food might enhance brain function in healthy individuals.


Assuntos
Citidina/metabolismo , Hipocampo/metabolismo , Memória , Salmão/metabolismo , Sêmen/química , Animais , Encéfalo/fisiologia , Aprendizagem , Masculino , Camundongos , Reconhecimento Psicológico
7.
Cancer Res ; 70(17): 6746-56, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20713529

RESUMO

Protein accumulation at DNA double-strand breaks (DSB) is essential for genome stability; however, the mechanisms governing these events are not fully understood. Here, we report a new role for the nucleophosmin protein NPM1 in these mechanisms. Thr199-phosphorylated NPM1 (pT199-NPM1) is recruited to nuclear DNA damage foci induced by ionizing radiation (IR). Foci formation is impaired by depletion of the E3 ubiquitin ligases RNF8 and RNF168 or the E2 Ubc13, and pT199-NPM1 binds to Lys63-linked ubiquitin polymers in vitro. Thus, phosphorylated NPM1 may interact with RNF8-dependent ubiquitin conjugates at sites of DNA damage. The interaction was found to rely on T199 phosphorylation, an acidic tract, and an adjacent ubiquitin-interacting motif-like domain. Depletion of the breast cancer suppressor BRCA1 or its partner, RAP80, enhanced IR-induced NPM1 foci and prolonged persistence of the foci, possibly implicating BRCA1 in pT199-NPM1 action and dynamics. Replacement of endogenous NPM1 with its nonphosphorylable T199A mutant prolonged persistence of IR-induced RAD51 foci accompanied by unrepaired DNA damage. Collectively, our findings suggest that phosphorylated NPM1 is a novel component in DSB repair that is recruited by ubiquitin conjugates downstream of RNF8 and RNF168.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Proteína BRCA1/deficiência , Proteína BRCA1/metabolismo , Reparo do DNA/fisiologia , Células HeLa , Humanos , Leupeptinas/farmacologia , Nucleofosmina , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ubiquitina-Proteína Ligases
8.
Cancer Res ; 70(15): 6384-92, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20631078

RESUMO

The breast cancer suppressor BRCA1 forms a stable heterodimeric E3 ubiquitin ligase with BARD1. Each protein controls the abundance and stability of the other, and loss of the interaction leads to BRCA1 degradation. Here, we show that HERC2, a protein recently implicated in DNA damage repair, targets BARD1-uncoupled BRCA1 for degradation. HERC2 shuttles between the nucleus and the cytoplasm. Its COOH-terminal HECT-containing domain interacts with an NH(2)-terminal degron domain in BRCA1. HERC2 ubiquitinates BRCA1; this reaction depends on Cys(4762) of HERC2, the catalytic ubiquitin binding site, and the degron of BRCA1. The HERC2-BRCA1 interaction is maximal during the S phase of the cell cycle and rapidly diminishes as cells enter G(2)-M, inversely correlated with the steady-state level of BRCA1. Significantly, HERC2 depletion antagonizes the effects of BARD1 depletion by restoring BRCA1 expression and G(2)-M checkpoint activity. Conversely, BARD1 protects BRCA1 from HERC2-mediated ubiquitination. Collectively, our findings identify a function for HERC2 in regulating BRCA1 stability in opposition to BARD1. The HERC2 expression in breast epithelial cells and breast carcinomas suggests that this mechanism may play a role in breast carcinogenesis.


Assuntos
Proteína BRCA1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias da Mama/metabolismo , Divisão Celular/fisiologia , Fase G2/fisiologia , Células HCT116 , Humanos , Fase S/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Breast Cancer ; 16(4): 268-74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19459031

RESUMO

Gene-expression profiling classified breast cancer to intrinsic subtypes, including luminal A and B, HER2 positive, normal-breast-like, and basal-like tumors. Of these, basal-like tumors that express basal cytokeratins and that are negative for estrogen receptor alpha, progesterone receptor, and HER2 show the most aggressive phenotype with a poor prognosis. Analyses of clinical samples and basic research indicate that basal-like breast cancer is caused by deficiencies in the breast cancer susceptibility protein, BRCA1. Indeed, conditionally deleting BRCA1 from the mammary gland causes mice to develop basal-like cancers at high rates. One of the major functions of BRCA1 is DNA double-strand break (DSB) repair, and its failure to perform causes increased sensitivity of cells to DNA damage-inducing agents, such as PARP inhibitors, DNA cross-linkers, or topoisomerase inhibitors. Therefore, BRCA1 dysfunction could be a principal target for therapeutic application of basal-like breast cancer. Recently, significant progress has been made in understanding the BRCA1 cascade in response to DSBs, where ubiquitin polymer formation plays critical roles. Ubiquitination was indeed found to be an apparent early response of breast cancer to neoadjuvant treatment with epirubicin and cyclophosphamide. Deducing the role of BRCA1 ubiquitin E3 ligase activity in this pathway is a critical challenge to further clarify its functional mechanism. In individualized treatment of breast cancer, evaluation of the DNA repair capacity by the BRCA1 pathway may be an important issue when determining proper treatment of basal-like breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Proteína BRCA1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Animais , Neoplasias da Mama/química , Receptor alfa de Estrogênio/análise , Feminino , Humanos , Camundongos , Receptor ErbB-2/análise , Receptores de Progesterona/análise
10.
Cancer Chemother Pharmacol ; 64(5): 1039-46, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19274461

RESUMO

PURPOSE: Breast cancer treatment often employs DNA double-strand breaks (DSBs), such as that induced by irradiation or anticancer agents. Ubiquitination is required at the site of DNA damage and plays a crucial role in the DSB repair pathway. We investigated the effect of proteasome inhibitors on the pathway after exposure to chemotherapeutic agents and examined its correlation with cytotoxicity. METHODS: Cells were exposed for 1 h to DNA damage-inducing chemotherapeutic agents. After DNA damage, nuclear foci formation of conjugated ubiquitin (Ub-foci) and cell viability were examined in the absence or presence of proteasome inhibitors MG132 and epoxomicin. RESULTS: Proteasome inhibitors trapped conjugated ubiquitin in the cytosol and blocked irinotecan (CPT-11)- and epirubicin-induced Ub-foci formation in MCF10A cells and HeLa cells, but not in MCF7 cells. MG132 sensitized MCF10A cells to CPT-11 and epirubicin treatment, demonstrating a synergistic effect. This synergistic effect is likely due to the failure to repair DNA, because a significant rise in unrepaired DNA damage was observed in the cells treated with MG132. On the other hand, no synergy was observed in MCF7 cells or when MG132 was combined with docetaxel. CONCLUSIONS: The synergistic effect of proteasome inhibitors in combination with DNA damage-inducing agents warrants further investigating into its effectiveness in the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Inibidores de Proteassoma , Antibióticos Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Epirubicina/farmacologia , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Irinotecano , Leupeptinas/farmacologia , Oligopeptídeos/farmacologia , Ubiquitina/metabolismo , Ubiquitina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA