Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Pract Neurol ; 20(6): 451-462, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32973035

RESUMO

Amyloid positron emission tomography (PET) imaging enables in vivo detection of brain Aß deposition, one of the neuropathological hallmarks of Alzheimer's disease. There is increasing evidence to support its clinical utility, with major studies showing that amyloid PET imaging improves diagnostic accuracy, increases diagnostic certainty and results in therapeutic changes. The Amyloid Imaging Taskforce has developed appropriate use criteria to guide clinicians by predefining certain scenarios where amyloid PET would be justified. This review provides a practical guide on how and when to use amyloid PET, based on the available research and our own experience. We discuss its three main appropriate indications and illustrate these with clinical cases. We stress the importance of a multidisciplinary approach when deciding who might benefit from amyloid PET imaging. Finally, we highlight some practical points and common pitfalls in its interpretation.


Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos
3.
Front Neurosci ; 18: 1366029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099637

RESUMO

Identifying disease-specific imaging features of idiopathic Normal Pressure Hydrocephalus (iNPH) is crucial to develop accurate diagnoses, although the abnormal brain anatomy of patients with iNPH creates challenges in neuroimaging analysis. We quantified cortical thickness and volume using FreeSurfer 7.3.2 in 19 patients with iNPH, 28 patients with Alzheimer's disease (AD), and 30 healthy controls (HC). We noted the frequent need for manual correction of the automated segmentation in iNPH and examined the effect of correction on the results. We identified statistically significant higher proportion of volume changes associated with manual edits in individuals with iNPH compared to both HC and patients with AD. Changes in cortical thickness and volume related to manual correction were also partly correlated with the severity of radiological features of iNPH. We highlight the challenges posed by the abnormal anatomy in iNPH when conducting neuroimaging analysis and emphasise the importance of quality checking and correction in this clinical population.

4.
Brain Commun ; 6(3): fcae151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903933

RESUMO

An accurate diagnosis of neurodegenerative disease and traumatic brain injury is important for prognostication and treatment. Neurofilament light and glial fibrillary acidic protein (GFAP) are leading biomarkers for neurodegeneration and glial activation that are detectable in blood. Yet, current recommendations require rapid centrifugation and ultra-low temperature storage post-venepuncture. Here, we investigated if these markers can be accurately measured in finger-prick blood using dried plasma spot cards. Fifty patients (46 with dementia; 4 with traumatic brain injury) and 19 healthy volunteers underwent finger-prick and venous sampling using dried plasma spot cards and aligned plasma sampling. Neurofilament light and GFAP were quantified using a Single molecule array assay and correlations between plasma and dried plasma spot cards assessed. Biomarker concentrations in plasma and finger-prick dried plasma spot samples were significantly positively correlated (neurofilament light ρ = 0.57; GFAP ρ = 0.58, P < 0.001). Finger-prick neurofilament light and GFAP were significantly elevated after acute traumatic brain injury with non-significant group-level increases in dementia (91% having Alzheimer's disease dementia). In conclusion, we present preliminary evidence that quantifying GFAP and neurofilament light using finger-prick blood collection is viable, with samples stored at room temperature using dried plasma spot cards. This has potential to expand and promote equitable testing access, including in settings where trained personnel are unavailable to perform venepuncture.

5.
Trials ; 25(1): 521, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095915

RESUMO

BACKGROUND: Digital technologies, such as wearable devices and smartphone applications (apps), can enable the decentralisation of clinical trials by measuring endpoints in people's chosen locations rather than in traditional clinical settings. Digital endpoints can allow high-frequency and sensitive measurements of health outcomes compared to visit-based endpoints which provide an episodic snapshot of a person's health. However, there are underexplored challenges in this emerging space that require interdisciplinary and cross-sector collaboration. A multi-stakeholder Knowledge Exchange event was organised to facilitate conversations across silos within this research ecosystem. METHODS: A survey was sent to an initial list of stakeholders to identify potential discussion topics. Additional stakeholders were identified through iterative discussions on perspectives that needed representation. Co-design meetings with attendees were held to discuss the scope, format and ethos of the event. The event itself featured a cross-disciplinary selection of talks, a panel discussion, small-group discussions facilitated via a rolling seating plan and audience participation via Slido. A transcript was generated from the day, which, together with the output from Slido, provided a record of the day's discussions. Finally, meetings were held following the event to identify the key challenges for digital endpoints which emerged and reflections and recommendations for dissemination. RESULTS: Several challenges for digital endpoints were identified in the following areas: patient adherence and acceptability; algorithms and software for devices; design, analysis and conduct of clinical trials with digital endpoints; the environmental impact of digital endpoints; and the need for ongoing ethical support. Learnings taken for next generation events include the need to include additional stakeholder perspectives, such as those of funders and regulators, and the need for additional resources and facilitation to allow patient and public contributors to engage meaningfully during the event. CONCLUSIONS: The event emphasised the importance of consortium building and highlighted the critical role that collaborative, multi-disciplinary, and cross-sector efforts play in driving innovation in research design and strategic partnership building moving forward. This necessitates enhanced recognition by funders to support multi-stakeholder projects with patient involvement, standardised terminology, and the utilisation of open-source software.


Assuntos
Ensaios Clínicos como Assunto , Determinação de Ponto Final , Participação dos Interessados , Humanos , Ensaios Clínicos como Assunto/métodos , Comportamento Cooperativo , Comunicação Interdisciplinar , Aplicativos Móveis , Dispositivos Eletrônicos Vestíveis , Projetos de Pesquisa , Smartphone
6.
EClinicalMedicine ; 59: 101980, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152359

RESUMO

Background: Online technology could potentially revolutionise how patients are cognitively assessed and monitored. However, it remains unclear whether assessments conducted remotely can match established pen-and-paper neuropsychological tests in terms of sensitivity and specificity. Methods: This observational study aimed to optimise an online cognitive assessment for use in traumatic brain injury (TBI) clinics. The tertiary referral clinic in which this tool has been clinically implemented typically sees patients a minimum of 6 months post-injury in the chronic phase. Between March and August 2019, we conducted a cross-group, cross-device and factor analyses at the St. Mary's Hospital TBI clinic and major trauma wards at Imperial College NHS trust and St. George's Hospital in London (UK), to identify a battery of tasks that assess aspects of cognition affected by TBI. Between September 2019 and February 2020, we evaluated the online battery against standard face-to-face neuropsychological tests at the Imperial College London research centre. Canonical Correlation Analysis (CCA) determined the shared variance between the online battery and standard neuropsychological tests. Finally, between October 2020 and December 2021, the tests were integrated into a framework that automatically generates a results report where patients' performance is compared to a large normative dataset. We piloted this as a practical tool to be used under supervised and unsupervised conditions at the St. Mary's Hospital TBI clinic in London (UK). Findings: The online assessment discriminated processing-speed, visual-attention, working-memory, and executive-function deficits in TBI. CCA identified two significant modes indicating shared variance with standard neuropsychological tests (r = 0.86, p < 0.001 and r = 0.81, p = 0.02). Sensitivity to cognitive deficits after TBI was evident in the TBI clinic setting under supervised and unsupervised conditions (F (15,555) = 3.99; p < 0.001). Interpretation: Online cognitive assessment of TBI patients is feasible, sensitive, and efficient. When combined with normative sociodemographic models and autogenerated reports, it has the potential to transform cognitive assessment in the healthcare setting. Funding: This work was funded by a National Institute for Health Research (NIHR) Invention for Innovation (i4i) grant awarded to DJS and AH (II-LB-0715-20006).

7.
PLoS One ; 6(3): e17547, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21448456

RESUMO

BACKGROUND: Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. CONCLUSIONS/SIGNIFICANCE: MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.


Assuntos
Hemorragia Cerebral/diagnóstico , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Artefatos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA