Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 586(7831): 790-795, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788725

RESUMO

Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Serina/deficiência , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Alanina/biossíntese , Alanina/metabolismo , Alanina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dieta , Feminino , Glicina/biossíntese , Glicina/deficiência , Glicina/metabolismo , Glicina/farmacologia , Células HCT116 , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Serina/sangue , Serina/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esferoides Celulares/patologia , Esfingolipídeos/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nature ; 553(7688): 351-355, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29320480

RESUMO

The circadian clock imposes daily rhythms in cell proliferation, metabolism, inflammation and DNA damage response. Perturbations of these processes are hallmarks of cancer and chronic circadian rhythm disruption predisposes individuals to tumour development. This raises the hypothesis that pharmacological modulation of the circadian machinery may be an effective therapeutic strategy for combating cancer. REV-ERBs, the nuclear hormone receptors REV-ERBα (also known as NR1D1) and REV-ERBß (also known as NR1D2), are essential components of the circadian clock. Here we show that two agonists of REV-ERBs-SR9009 and SR9011-are specifically lethal to cancer cells and oncogene-induced senescent cells, including melanocytic naevi, and have no effect on the viability of normal cells or tissues. The anticancer activity of SR9009 and SR9011 affects a number of oncogenic drivers (such as HRAS, BRAF, PIK3CA and others) and persists in the absence of p53 and under hypoxic conditions. The regulation of autophagy and de novo lipogenesis by SR9009 and SR9011 has a critical role in evoking an apoptotic response in malignant cells. Notably, the selective anticancer properties of these REV-ERB agonists impair glioblastoma growth in vivo and improve survival without causing overt toxicity in mice. These results indicate that pharmacological modulation of circadian regulators is an effective antitumour strategy, identifying a class of anticancer agents with a wide therapeutic window. We propose that REV-ERB agonists are inhibitors of autophagy and de novo lipogenesis, with selective activity towards malignant and benign neoplasms.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Oncogenes/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Lipogênese/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/genética , Nevo/tratamento farmacológico , Nevo/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
3.
J Biol Chem ; 294(27): 10698-10707, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152059

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of biologically active lipids. Here we identify the linoleic acid ester of 13-hydroxy linoleic acid (13-LAHLA) as an anti-inflammatory lipid. An oat oil fraction and FAHFA-enriched extract from this fraction showed anti-inflammatory activity in a lipopolysaccharide-induced cytokine secretion assay. Structural studies identified three LAHLA isomers (15-, 13-, and 9-LAHLA) as being the most abundant FAHFAs in the oat oil fraction. Of these LAHLAs, 13-LAHLA is the most abundant LAHLA isomer in human serum after ingestion of liposomes made of fractionated oat oil, and it is also the most abundant endogenous LAHLA in mouse and human adipose tissue. As a result, we chemically synthesized 13-LAHLA for biological assays. 13-LAHLA suppresses lipopolysaccharide-stimulated secretion of cytokines and expression of pro-inflammatory genes. These studies identify LAHLAs as an evolutionarily conserved lipid with anti-inflammatory activity in mammalian cells.


Assuntos
Anti-Inflamatórios/química , Avena/química , Ésteres/química , Ácidos Linoleicos/química , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Avena/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Células RAW 264.7 , Estereoisomerismo
4.
Proc Natl Acad Sci U S A ; 114(3): 580-585, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049847

RESUMO

Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor-macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor-macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Adesão Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Ativação de Macrófagos , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica , Prognóstico , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Microambiente Tumoral
5.
Anal Chem ; 90(8): 5358-5365, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578702

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous lipids with antidiabetic and anti-inflammatory activities. Interest in these lipids is due to their unique biological activites and the observation that insulin-resistant people have lower palmitic acid esters of hydroxystearic acid (PAHSA) levels, suggesting that a FAHFA deficiency may contribute to metabolic disease. Rigorous testing of this hypothesis will require the measurement of many clinical samples; however, current analytical workflows are too slow to enable samples to be analyzed quickly. Here we describe the development of a significantly faster workflow to measure FAHFAs that optimizes the fractionation and chromatography of these lipids. We can measure FAHFAs in 30 min with this new protocol versus 90 min using the older protocol with comparable performance in regioisomer detection and quantitation. We also discovered through this optimization that oleic acid esters of hydroxystearic acids (OAHSAs), another family of FAHFAs, have a much lower background signal than PAHSAs, which makes them easier to measure. Our faster workflow was able to quantify changes in PAHSAs and OAHSAs in mouse tissues and human plasma, highlighting the potential of this protocol for basic and clinical applications.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Extração em Fase Sólida
6.
Nat Chem Biol ; 12(5): 367-372, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27018888

RESUMO

Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural, relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty acid esters of hydroxy fatty acids (FAHFAs) but not other major classes of lipids. We identify multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent or parallel protein evolution that defy conventional sequence- and structure-based predictions.


Assuntos
Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Hidroxiácidos/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Ésteres , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Hidrolases/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida
7.
J Am Chem Soc ; 139(13): 4943-4947, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28350171

RESUMO

Lipids have fundamental roles in the structure, energetics, and signaling of cells and organisms. The recent discovery of fatty acid esters of hydroxy fatty acids (FAHFAs), lipids with potent antidiabetic and anti-inflammatory activities, indicates that our understanding of the composition of lipidome and the function of lipids is incomplete. The ability to synthesize and test FAHFAs was critical in elucidating the roles of these lipids, but these studies were performed with racemic mixtures, and the role of stereochemistry remains unexplored. Here, we synthesized the R- and S- palmitic acid ester of 9-hydroxystearic acid (R-9-PAHSA, S-9-PAHSA). Access to highly enantioenriched PAHSAs enabled the development of a liquid chromatography-mass spectrometry (LC-MS) method to separate and quantify R- and S-9-PAHSA, and this approach identified R-9-PAHSA as the predominant stereoisomer that accumulates in adipose tissues from transgenic mice where FAHFAs were first discovered. Furthermore, biochemical analysis of 9-PAHSA biosynthesis and degradation indicate that the enzymes and pathways for PAHSA production are stereospecific, with cell lines favoring the production of R-9-PAHSA and carboxyl ester lipase (CEL), a PAHSA degradative enzyme, selectively hydrolyzing S-9-PAHSA. These studies highlight the role of stereochemistry in the production and degradation of PAHSAs and define the endogenous stereochemistry of 9-PAHSA in adipose tissue. This information will be useful in the identification and characterization of the pathway responsible for PAHSA biosynthesis, and access to enantiopure PAHSAs will elucidate the role of stereochemistry in PAHSA activity and metabolism in vivo.


Assuntos
Tecido Adiposo/química , Ésteres/química , Ácido Palmítico/química , Ácidos Esteáricos/química , Tecido Adiposo/metabolismo , Animais , Ésteres/síntese química , Ésteres/metabolismo , Células HEK293 , Humanos , Lipase/metabolismo , Lipídeos/química , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Ácido Palmítico/síntese química , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Estereoisomerismo
8.
Biochemistry ; 55(33): 4636-41, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27509211

RESUMO

A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs.


Assuntos
Carboxilesterase/metabolismo , Ácidos Graxos/química , Ésteres , Especificidade por Substrato
10.
Sci Adv ; 9(33): eadg6262, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595033

RESUMO

Lipid synthesis is necessary for formation of epithelial barriers and homeostasis with external microbes. An analysis of the response of human keratinocytes to several different commensal bacteria on the skin revealed that Cutibacterium acnes induced a large increase in essential lipids including triglycerides, ceramides, cholesterol, and free fatty acids. A similar response occurred in mouse epidermis and in human skin affected with acne. Further analysis showed that this increase in lipids was mediated by short-chain fatty acids produced by Cutibacterium acnes and was dependent on increased expression of several lipid synthesis genes including glycerol-3-phosphate-acyltransferase-3. Inhibition or RNA silencing of peroxisome proliferator-activated receptor-α (PPARα), but not PPARß and PPARγ, blocked this response. The increase in keratinocyte lipid content improved innate barrier functions including antimicrobial activity, paracellular diffusion, and transepidermal water loss. These results reveal that metabolites from a common commensal bacterium have a previously unappreciated influence on the composition of epidermal lipids.


Assuntos
Epiderme , Pele , Humanos , Animais , Camundongos , Queratinócitos , Ceramidas , Difusão
11.
Cell Metab ; 34(1): 171-183.e6, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986332

RESUMO

Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Insulina/metabolismo , Lipólise/fisiologia
12.
Org Lett ; 21(19): 8080-8084, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31545060

RESUMO

The syntheses of linoleic acid esters of hydroxy linoleic acids (LAHLAs) present in oat oil and human serum have been achieved, providing access to material for testing and the determination of the stereochemistry of the natural compounds. While 9- and 13-LAHLAs were found to be a mixture of enantiomers 15-LAHLA is generated in a single optical form in oat oil. The stereochemistry of 15-LAHLA in oat oil was found to be opposite to that reported for digalactosyldiacylglycerol that possesses an embedded 15-LAHLA.

13.
Cell Metab ; 27(2): 419-427.e4, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414687

RESUMO

Palmitic acid hydroxystearic acids (PAHSAs) are endogenous lipids with anti-diabetic and anti-inflammatory effects. PAHSA levels are reduced in serum and adipose tissue of insulin-resistant people and high-fat diet (HFD)-fed mice. Here, we investigated whether chronic PAHSA treatment enhances insulin sensitivity and which receptors mediate PAHSA effects. Chronic PAHSA administration in chow- and HFD-fed mice raises serum and tissue PAHSA levels ∼1.4- to 3-fold. This improves insulin sensitivity and glucose tolerance without altering body weight. PAHSA administration in chow-fed, but not HFD-fed, mice augments insulin and glucagon-like peptide (GLP-1) secretion. PAHSAs are selective agonists for GPR40, increasing Ca+2 flux, but not intracellular cyclic AMP. Blocking GPR40 reverses improvements in glucose tolerance and insulin sensitivity in PAHSA-treated chow- and HFD-fed mice and directly inhibits PAHSA augmentation of glucose-stimulated insulin secretion in human islets. In contrast, GLP-1 receptor blockade in PAHSA-treated chow-fed mice reduces PAHSA effects on glucose tolerance, but not on insulin sensitivity. Thus, PAHSAs activate GPR40, which is involved in their beneficial metabolic effects.


Assuntos
Glucose/metabolismo , Homeostase , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Esteáricos/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Inflamação/patologia , Resistência à Insulina , Camundongos Endogâmicos C57BL
15.
Sci Rep ; 8(1): 1218, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352135

RESUMO

The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity.

16.
Nat Commun ; 8(1): 660, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939823

RESUMO

Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation. Treatment of cancer cell lines in which RAB25 is pro-oncogenic with an optimized stapled peptide, RFP14, inhibits migration, and proliferation in a RAB25-dependent manner. In contrast, RFP14 treatment augments these phenotypes in breast cancer cells in which RAB25 is tumor suppressive. Transcriptional profiling identified significantly altered transcripts in response to RAB25 expression, and treatment with RFP14 opposes this expression profile. These data validate the first cell-active chemical probes targeting RAB-family proteins and support the role of RAB25 in regulating context-specific oncogenic phenotypes.The Ras-family small GTPase RAB25 can exert both pro- and anti-oncogenic functions. Here, the authors develop all-hydrocarbon stabilized peptides targeting RAB25 and influencing the context-specificity phenotypes in cancer cell lines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais
17.
Cell Metab ; 25(2): 463-471, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28089566

RESUMO

Metformin is the most widely prescribed drug for the treatment of type 2 diabetes. However, knowledge of the full effects of metformin on biochemical pathways and processes in its primary target tissue, the liver, is limited. One established effect of metformin is to decrease cellular energy levels. The AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are key regulators of metabolism that are respectively activated and inhibited in acute response to cellular energy depletion. Here we show that metformin robustly inhibits mTORC1 in mouse liver tissue and primary hepatocytes. Using mouse genetics, we find that at the lowest concentrations of metformin that inhibit hepatic mTORC1 signaling, this inhibition is dependent on AMPK and the tuberous sclerosis complex (TSC) protein complex (TSC complex). Finally, we show that metformin profoundly inhibits hepatocyte protein synthesis in a manner that is largely dependent on its ability to suppress mTORC1 signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fígado/metabolismo , Metformina/farmacologia , Complexos Multiproteicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos
18.
Cell Metab ; 25(2): 412-427, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28041958

RESUMO

Macrophages play pivotal roles in both the induction and resolution phases of inflammatory processes. Macrophages have been shown to synthesize anti-inflammatory fatty acids in an LXR-dependent manner, but whether the production of these species contributes to the resolution phase of inflammatory responses has not been established. Here, we identify a biphasic program of gene expression that drives production of anti-inflammatory fatty acids 12-24 hr following TLR4 activation and contributes to downregulation of mRNAs encoding pro-inflammatory mediators. Unexpectedly, rather than requiring LXRs, this late program of anti-inflammatory fatty acid biosynthesis is dependent on SREBP1 and results in the uncoupling of NFκB binding from gene activation. In contrast to previously identified roles of SREBP1 in promoting production of IL1ß during the induction phase of inflammation, these studies provide evidence that SREBP1 also contributes to the resolution phase of TLR4-induced gene activation by reprogramming macrophage lipid metabolism.


Assuntos
Ácidos Graxos/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sequência de Bases , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Elementos Facilitadores Genéticos/genética , Inflamação/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptores X do Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
19.
Nat Protoc ; 11(4): 747-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26985573

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects. We previously identified 16 different FAHFA families, such as branched palmitic acid esters of hydroxy stearic acids (PAHSAs); each family consists of multiple isomers in which the branched ester is at different positions (e.g., 5- and 9-PAHSA). We anticipate increased need for PAHSA measurements as markers of metabolic and inflammatory health. In this protocol, we provide a detailed description of the extraction of FAHFAs from human or mouse tissues, their enrichment by solid-phase extraction and subsequent analysis by LC-MS. For a sample size of 6-12, the time frame is 2-3 d.


Assuntos
Cromatografia Líquida/métodos , Ácidos Graxos/análise , Espectrometria de Massas/métodos , Animais , Ácidos Graxos/isolamento & purificação , Humanos , Camundongos , Fatores de Tempo , Fluxo de Trabalho
20.
Nat Med ; 22(10): 1108-1119, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27643638

RESUMO

Continuous de novo fatty acid synthesis is a common feature of cancer that is required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain the de novo fatty acid synthesis needed for growth and viability of non-small-cell lung cancer (NSCLC) cells. We describe the ability of ND-646-an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization-to suppress fatty acid synthesis in vitro and in vivo. Chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in the Kras;Trp53-/- (also known as KRAS p53) and Kras;Stk11-/- (also known as KRAS Lkb1) mouse models of NSCLC. These findings demonstrate that ACC mediates a metabolic liability of NSCLC and that ACC inhibition by ND-646 is detrimental to NSCLC growth, supporting further examination of the use of ACC inhibitors in oncology.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Proteínas Quinases Ativadas por AMP , Acetiltransferases/antagonistas & inibidores , Regulação Alostérica , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA