RESUMO
A total synthesis of the enantiopure syn,syn-tosyl-samroiyotmycin A, a C2-symmetric 20-membered antimalarial macrodiolide with syn,syn-configuration of the 8,24-dihydroxy-9,25-dimethyl units and it's enantiopure anti,anti-derivative is described. The synthesis was accomplished utilizing a linear approach in 7 steps and 3 % overall yield via a sequence of diastereoselective methylation of SuperQuat oxazolidinone auxiliary, cross metathesis and Yamaguchi macrolactonization of fully functionalized seco-acids. By a similar approach we gained access to several samroiyotmycin analogues and precursors. Antimalarial activity was tested on multi-resistant (K1) and sensitive (Nf54) P. falciparum strains providing insight into structure activity relationships. Both tosyl-oxazol unit as well as the syn-configuration of the two contiguous stereogenic centers turned out to be beneficial for antiplasmodial activity. For instance, syn,syn-tosyl-samroiyotmycin A showed 3.4 times higher activities than the "tosyl-free" natural product.
RESUMO
Dienones are challenging building blocks in natural product synthesis due to their high reactivity and complex synthesis. Based on previous work and own initial results, a new stereospecific sequential hydrozirconation/Pd-catalyzed acylation of enynes with acyl chlorides towards conjugated (2E,4E)-dienones is reported. We investigated a number of substrates with different alkyl and aryl substituents in the one-pot reaction and showed that regardless of the substitution pattern, the reactions lead to the stereoselective formation (≥95% (2E,4E)) of the respective dienones under mild conditions. It was found that enynes with alkyl chains gave higher yields than the corresponding aryl-substituted analogues, whereas the variation of the acyl chlorides did not affect the reaction significantly. The synthetic application is demonstrated by formation of non-natural and natural dienone-containing terpenes such as ß-ionone which was available in 4 steps and 6% overall yield.