Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 106: 102842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492545

RESUMO

Extracellular vesicles (EVs) as membrane-bound particles released by various cells are potential tools for diagnosis and treatment. Blood cells, particularly platelets, are the source of circulating EVs. MATERIAL: EVs were enriched with gradient ultracentrifugation and measured by nanoparticle tracking assay. A flow cytometric multiplex assay was used for cellular source determination. Activation of platelets was measured as a percentage of CD62p+/CD61+ platelets and correlated with the concentration and size of released EVs. RESULTS: In general there was no statistically significant correlation between EVs` concentration and degree of platelet activation. EVs from different cellular sources were detected. Comparing different needle thicknesses, there was a decrease in the EVs concentration for the 16G needle versus the 21G needle, but no difference was observed for EVs` size and phenotype or platelets activation. During blood storage, platelet activation increased, but there was no effect on the EVs` concentration, size, or phenotype. CONCLUSIONS: Preanalytical factors like needle thickness and storage time can affect the MVs' properties. Activation of platelets during blood collection or blood storage occurs; however, it is difficult to determine its effect on the physiological properties of EVs since the mechanisms of EVs` biogenesis and especially clearness are not precisely known.


Assuntos
Vesículas Extracelulares , Ativação Plaquetária , Humanos , Plaquetas , Coagulação Sanguínea , Preservação de Sangue
2.
Transfus Med Hemother ; 51(3): 175-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867805

RESUMO

Background: At the beginning of the pandemic, COVID-19 convalescent plasma (CCP) containing anti-SARS-CoV-2 antibodies was suggested as a source of therapy. In the last 3 years, many trials have demonstrated the limited usefulness of CCP therapy. This led us to the hypothesis that CCP could contain other elements, along with the desired neutralizing antibodies, which could potentially prevent it from having a therapeutic effect, among them cytokines, chemokines, growth factors, clotting factors, and autoantibodies. Methods: In total, 39 cytokines were analyzed in the plasma of 190 blood donors, and further research focused on the levels of 23 different cytokines in CCP (sCD40L, eotaxin, FGF-2, FLT-3L, ractalkine, GRO-α, IFNα2, IL-1ß, IL-1RA, IL-5, IL-6, IL-8, IL-12, IL-13, IL-15, IL-17E, IP-10, MCP-1, MIP-1b, PDGF-AA, TGFα, TNFα, and TRAIL). Anti-SARS-CoV-2 antibodies and neutralizing antibodies were detected in CCP. Results: We found no significant differences between CCP taken within a maximum of 180 days from the onset of the first COVID-19 symptoms and the controls. We also made a comparison of the cytokine levels between the low neutralizing antibodies (<160) group and the high neutralizing antibodies (≥160) group and found there were no differences between the groups. Our research also showed no correlation either to levels of anti-SARS-CoV-2 IgG Ab or to the levels of neutralizing antibodies. There were also no significant changes in cytokine levels based on the period after the start of COVID-19 symptoms. Conclusions: No elements which could potentially be responsible for preventing CCP from having a therapeutic effect were found.

3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542411

RESUMO

The use of extracellular vesicles (EVs) generated by mesenchymal stem cells (MSCs) holds great promise as a novel therapeutic approach. Although their immunomodulatory and regeneration potential has been reported to be similar to that of MSCs, the use of MSC-derived EVs in clinical settings will require several problems to be resolved. It is necessary to develop a standardised and widely accepted isolation technology and to improve methods such as the quantification and characterisation of MSC-derived EVs. In this way, EV studies can be compared, the acquired knowledge can be safely transferred to clinical platforms and the clinical results can be evaluated appropriately. There are many procedures for the collection and analysis of vesicles derived from different cells; however, this review provides an overview of methods for the determination of the total protein amount, specific proteins, particle number, non-protein markers like lipids and RNA, microscopy and other methods focusing on MSC-derived EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA/metabolismo , Imunomodulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA